Numerical investigation of the stress concentration on 7075-T651 aluminum alloy with one or two hemispherical pits under uniaxial or biaxial loading

2019 ◽  
Vol 131 ◽  
pp. 23-35 ◽  
Author(s):  
Ishvari F. Zuñiga Tello ◽  
Gonzalo M. Domínguez Almaraz ◽  
Víctor López Garza ◽  
Manuel Guzmán Tapia
Meccanica ◽  
2021 ◽  
Author(s):  
A. Sapora ◽  
G. Efremidis ◽  
P. Cornetti

AbstractTwo nonlocal approaches are applied to the borehole geometry, herein simply modelled as a circular hole in an infinite elastic medium, subjected to remote biaxial loading and/or internal pressure. The former approach lies within the framework of Gradient Elasticity (GE). Its characteristic is nonlocal in the elastic material behaviour and local in the failure criterion, hence simply related to the stress concentration factor. The latter approach is the Finite Fracture Mechanics (FFM), a well-consolidated model within the framework of brittle fracture. Its characteristic is local in the elastic material behaviour and non-local in the fracture criterion, since crack onset occurs when two (stress and energy) conditions in front of the stress concentration point are simultaneously met. Although the two approaches have a completely different origin, they present some similarities, both involving a characteristic length. Notably, they lead to almost identical critical load predictions as far as the two internal lengths are properly related. A comparison with experimental data available in the literature is also provided.


2013 ◽  
Vol 456 ◽  
pp. 451-455
Author(s):  
Jun Yang ◽  
Bo Li ◽  
Qiang Jia ◽  
Yuan Xing Li ◽  
Ming Yue Zhang ◽  
...  

Fatigue test of the welded joint of 5083 aluminum alloy with smooth and height of specimen and the weld zone than the high test measurement and theoretical stress concentration coefficient calculation, the weld reinforcement effect of stress concentration on the fatigue performance of welded joints. The results show that: Smooth tensile strength of specimens for 264MPa, fatigue strength is 95MPa, the tensile strength of the 36%. Higher tensile strength of specimens for 320MPa, fatigue strength is 70MPa, the tensile strength of the 22%. Higher specimen stress concentration coefficient is 1.64, the stress concentration to the weld toe becomes fatigue initiation source, and reduces the fatigue strength and the fatigue life of welded joints.


2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


1993 ◽  
Vol 28 (3) ◽  
pp. 223-235 ◽  
Author(s):  
P Stanley ◽  
B J Day

The results of an extensive ‘frozen-stress’ photoelastic investigation of the stresses at isolated oblique holes in thick wide plates subjected to uniform uniaxial tension are used to provide stress concentration factors at holes resulting from any form of biaxial in-plane loading. The work covers plate thickness/hole diameter ratios from 1.3 to 3.0 and hole obliquity angles up to 60 degrees. Over these ranges the effects of changes in the plate thickness/hole diameter ratio are not of major importance but the effects of changes in the angle of obliquity are considerable.


Sign in / Sign up

Export Citation Format

Share Document