scholarly journals Analysis of a symmetrical multilevel DC-DC boost converter with ripple reduction structure for solar PV systems

Author(s):  
Ahmed Allehyani
2018 ◽  
Vol 7 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Kashif Javed ◽  
Haroon Ashfaq ◽  
Rajveer Singh

Small solar PV systems mostly residential PV systems are bounded to be low cost. So these systems are required low-cost processors, and these low-cost processors can only process simple algorithm efficiently. The conventional P&O MPPT algorithm is widely employed algorithm to control solar PV systems because of its simplicity, low cost, and ease of implementation. During rapid radiation change condition (RRC) the output voltage of conventional P&O MPPT algorithm is found unstable and suffers oscillations around MPP at transient and steady state conditions. This paper proposes a simple MPPT algorithm for small or residential solar PV systems to eliminate such above said drawbacks. The proposed MPPT controls the step size (dD) of the boost converter duty cycle (D) according to the system input conditions and have the ability to compensate the transient as well as steady-state oscillations around MPP and stabilize the output voltage under RRC and variable load conditions. To validate the proposed algorithm, a 1kW photovoltaic system model is simulated using MATLAB/Simulink, and the performance of the system is also investigated under RRC. The performance of proposed MPPT algorithm is found to be adequate under various insolation patterns. An experimental set-up comprising a boost converter, solar emulator with dSPACE controller is also used to investigate the performance of proposed MPPT algorithm further.Article History: Received October 4th 2017; Received in revised form September 15th 2018; Accepted November 1st 2018; Available onlineHow to Cite This Article: Javed, K. Ashfaq, H and Singh, R. (2018). An Improved MPPT Algorithm to Minimize Transient and Steady State Oscillation Conditions for Small SPV Systems. International Journal of Renewable Energy Development, 7(3), 191-197.http://dx.doi.org/10.14710/ijred.7.3.191-197


Author(s):  
Lakhdar Bentouati ◽  
Ali Cheknane ◽  
Boumediène Benyoucef ◽  
Oscar Barambones

The need to increase the voltage level produced by PV systems becomes an urgent task to be compatible with the requirements of the AC load, but we meet problems in the operation of the step-up converter at a high duty cycle which is not preferred due to the reduction in voltage gain, and also a higher number of turns ratio in the windings inductance coupled adds to the overall losses of the converter. This article proposes an improved DC-DC converter with a lower duty cycle by integrating three tapped-inductors in new topology, which combined quadratic boost converter and tapped-inductor boost converter. The proposed converter achieves a high voltage gain with a lower duty ratio (Gmax = 14.32) and a maximum efficiency of 98.68% is improved compared to the voltage gain and efficiency results of these converters in several recently published references. The analyses are done theoretically and supported with simulation results. A prototype of the proposed converter has been built to experimentally validate the obtained results.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


Author(s):  
Sharmin Rahman ◽  
Sajeeb Saha ◽  
Shama Naz Islam ◽  
M Arif ◽  
Mehdi Mosadeghy ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 751
Author(s):  
Mariam A. Sameh ◽  
Mostafa I. Marei ◽  
M. A. Badr ◽  
Mahmoud A. Attia

During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques have become essential for PV systems to secure harvesting the maximum possible power from the PV modules. In this paper, optimized control is performed through the application of relatively newly developed optimization algorithms to PV systems under Partial Shading (PS) conditions. The initial value of the duty cycle of the boost converter is optimized for maximizing the amount of power extracted from the PV arrays. The emperor penguin optimizer (EPO) is proposed not only to optimize the initial setting of duty cycle but to tune the gains of controllers used for the boost converter and the grid-connected inverter of the PV system. In addition, the performance of the proposed system based on the EPO algorithm is compared with another newly developed optimization technique based on the cuttlefish algorithm (CFA). Moreover, particle swarm optimization (PSO) algorithm is used as a reference algorithm to compare results with both EPO and CFA. PSO is chosen since it is an old, well-tested, and effective algorithm. For the evaluation of performance of the proposed PV system using the proposed algorithms under different PS conditions, results are recorded and introduced.


Sign in / Sign up

Export Citation Format

Share Document