Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles

2010 ◽  
Vol 139 (1-2) ◽  
pp. 181-186 ◽  
Author(s):  
B.A. Woodcock ◽  
J. Redhead ◽  
A.J. Vanbergen ◽  
L. Hulmes ◽  
S. Hulmes ◽  
...  
2017 ◽  
Vol 107 (4) ◽  
pp. 466-477 ◽  
Author(s):  
J. Sipos ◽  
J. Hodecek ◽  
T. Kuras ◽  
A. Dolny

AbstractAlthough ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.


2019 ◽  
Vol 91 (3) ◽  
pp. 349-364
Author(s):  
Jerzy Solon ◽  
Edyta Regulska

We studied the effects of landscape structure and agricultural land-use on ground beetles (Carabidae) in a temperate farmland mosaic and homogeneous landscape. The research was carried out at twelve research sites located in two regional units, i.e. (a) the northern part of mesoregion 842.72 West Lake District in the macroregion of the Lithuanian Lake District and (b) in the southern part of mesoregion 313.44 Damnicka Upland, within the macroregion of the Koszalin Coastland. By administrative division, these positions are respectively: in the gmina of Dubeninki, voivodeship of Warmian-Masury (Rogajny and Łoje), and in the gmina of Przerośl in Podlasie voivodeship (Rakówek) – hereinafter referred to collectively as the “Dubeninki area”; as well as in the gmina of Potęgowo in the Pomeranian Voivodship (villages of Wieliszewo, Malczkowo, Darżyno and Darżynko – hereinafter referred to as the “Potęgowo area”). Four of the research sites were located in fields of large area, and four in complexes of small fields subject to traditional cultivation. The faunistic data comes from 12 transects (6 for each regional unit and 3 for each field type – large-area fields and complexes of small fields) using standard trapping methods (Barber˙s traps). A set of landscape-structure indicators adapted to the local scale of the study was then applied. Results point to a relationship between the structure of the landscape, the expressed number of patches of plant communities, the diversity of vegetation in the surroundings and the presence of trees in the landscape, and species richness and diversity of ground beetles. Where agricultural areas nevertheless have a diversified landscape these are characterised by greater species richness of Carabidae than homogeneous areas. Furthermore, the shorter the distance to the nearest tree, the greater the species richness and diversity of Carabidae. However, soil type, as well as soil diversity, at a study site and its vicinity are not found to exert a direct impact on the species richness of Carabidae. Different soil types may be characterised by similar grain size, and thus similar humidity conditions and soil reaction, with these in turn determining other habitat conditions of importance to the studied taxon.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


Author(s):  
Vivien Cosandey ◽  
Robin Séchaud ◽  
Paul Béziers ◽  
Yannick Chittaro ◽  
Andreas Sanchez ◽  
...  

AbstractBird nests are specialized habitats because of their particular composition including nest detritus and bird droppings. In consequence, they attract a specialized arthropod community considered as nidicolous, which includes species only found in bird nests (strictly nidicolous) or sometimes found in bird nests (facultatively nidicolous). Because the factors influencing the entomofauna in bird nests are poorly understood, in autumn 2019, we collected nest material in 86 Barn Owl (Tyto alba) nest boxes. We investigated whether the invertebrate species richness was related to Barn Owl nest box occupancy, the density of available nest boxes and the landscape structure. We found 3,321 nidicolous beetle specimens belonging to 24 species. Species richness of strictly nidicolous beetles was 2.7 times higher in nest boxes occupied by a family of Barn Owls the previous spring compared to unoccupied nest boxes. It was also higher in sites that were more often occupied by Barn Owls in the five previous years and in areas surrounded by a higher proportion of crop fields. For facultatively nidicolous beetles, the density of Barn Owl nest boxes enhanced the species richness. In conclusion, our study suggests that the strictly nidicolous beetles benefit from occupied nest boxes of Barn Owls, whereas facultatively nidicolous beetles look for nest boxes independently of whether Barn Owls occupy them. Our study highlights the importance of bird nests for a suite of invertebrates.


2006 ◽  
Vol 41 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Piotr Skórka ◽  
Rafał martyka ◽  
Joanna D. Wójcik

2019 ◽  
Vol 4 (2) ◽  
pp. 75-83
Author(s):  
Federico Morelli ◽  
Zbigniew Kwieciński ◽  
Piotr Indykiewicz ◽  
Łukasz Jankowiak ◽  
Paweł Szymański ◽  
...  

Abstract Farmland landscapes are recognized as important ecosystems, not only for their rich biodiversity but equally so for the human beings who live and work in these places. However, biodiversity varies among sites (spatial change) and among seasons (temporal change). In this work, we tested the hypothesis that bird diversity hotspots distribution for breeding is congruent with bird diversity hotspots for wintering season, focusing also the representation of protected areas for the conservation of local hotspots. We proposed a framework based on the use of species richness, functional diversity, and evolutionary distinctiveness to characterize avian communities. Although our findings show that the spatial distribution of local bird hotspots differed slightly between seasons, the protected areas’ representation was similar in both seasons. Protected areas covered 65% of the most important zones for breeding and 71% for the wintering season in the farmland studied. Functional diversity showed similar patterns as did bird species richness, but this measure can be most effective for highlighting differences on bird community composition. Evolutionary distinctiveness was less congruent with species richness and functional diversity, among seasons. Our findings suggest that inter-seasonal spatial congruence of local hotspots can be considered as suitable areas upon which to concentrate greater conservation efforts. However, even considering the relative congruence of avian diversity metrics at a local spatial scale, simultaneous analysis of protected areas while inter-seasonally considering hotspots, can provide a more complete representation of ecosystems for assessing the conservation status and designating priority areas.


2020 ◽  
Author(s):  
Noémie A. Pichon ◽  
Seraina L. Cappelli ◽  
Santiago Soliveres ◽  
Tosca Mannall ◽  
Thu Zar Nwe ◽  
...  

SummaryThe ability of an ecosystem to deliver multiple functions at high levels (multifunctionality) typically increases with biodiversity but there is substantial variation in the strength and direction of biodiversity effects, suggesting context-dependency. However, the drivers of this context dependency have not been identified and understood in comparative meta-analyses or experimental studies. To determine how different factors modulate the effect of diversity on multifunctionality, we conducted a large grassland experiment with 216 communities, crossing a manipulation of plant species richness (1-20 species) with manipulations of resource availability (nitrogen enrichment), plant functional composition (gradient in mean specific leaf area [SLA] to manipulate abundances of fast vs. slow species), plant functional diversity (variance in SLA) and enemy abundance (fungal pathogen removal). We measured ten functions, above and belowground, related to productivity, nutrient cycling and energy transfer between trophic levels, and calculated multifunctionality. Plant species richness and functional diversity both increased multifunctionality, but their effects were context dependent. Species richness increased multifunctionality, but only when communities were assembled with fast growing (high SLA) species. This was because slow species were more redundant in their functional effects, whereas fast species tended to promote different functions. Functional diversity also increased multifunctionality but this effect was dampened by nitrogen enrichment, however, unfertilised, functionally diverse communities still delivered more functions than low diversity, fertilised communities. Our study suggests that a shift towards exploitative communities will not only alter ecosystem functioning but also the strength of biodiversity-functioning relationships, which highlights the potentially complex effects of global change on multifunctionality.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12191
Author(s):  
Marko Gómez-Hernández ◽  
Emily Avendaño-Villegas ◽  
María Toledo-Garibaldi ◽  
Etelvina Gándara

Macromycetes are a group of fungi characterized by the production of fruit bodies and are highly relevant in most terrestrial ecosystems as pathogens, mutualists, and organic matter decomposers. Habitat transformation can drastically alter macromycete communities and diminish the contribution of these organisms to ecosystem functioning; however, knowledge on the effect of urbanization on macrofungal communities is scarce. Diversity metrics based on functional traits of macromycete species have shown to be valuable tools to predict how species contribute to ecosystem functionality since traits determine the performance of species in ecosystems. The aim of this study was to assess patterns of species richness, functional diversity, and composition of macrofungi in an urban ecosystem in Southwest Mexico, and to identify microclimatic, environmental, and urban factors related to these patterns in order to infer the effect of urbanization on macromycete communities. We selected four oak forests along an urbanization gradient and established a permanent sampling area of 0.1 ha at each site. Macromycete sampling was carried out every week from June to October 2017. The indices used to measure functional diversity were functional richness (FRic), functional divergence (FDig), and functional evenness (FEve). The metric used to assess variation of macrofungal ecological function along the study area was the functional value. We recorded a total of 134 macromycete species and 223 individuals. Our results indicated a decline of species richness with increased urbanization level related mainly to microclimatic variables, and a high turnover of species composition among study sites, which appears to be related to microclimatic and urbanization variables. FRic decreased with urbanization level, indicating that some of the available resources in the niche space within the most urbanized sites are not being utilized. FDig increased with urbanization, which suggests a high degree of niche differentiation among macromycete species within communities in urbanized areas. FEve did not show notable differences along the urbanization gradient, indicating few variations in the distribution of abundances within the occupied sections of the niche space. Similarly, the functional value was markedly higher in the less urbanized site, suggesting greater performance of functional guilds in that area. Our findings suggest that urbanization has led to a loss of macromycete species and a decrease in functional diversity, causing some sections of the niche space to be hardly occupied and available resources to be under-utilized, which could, to a certain extent, affect ecosystem functioning and stability.


Sign in / Sign up

Export Citation Format

Share Document