Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient

2019 ◽  
Vol 272 ◽  
pp. 230-236 ◽  
Author(s):  
Alejandro Trillo ◽  
Ana Montero-Castaño ◽  
Juan P. González-Varo ◽  
Pablo González-Moreno ◽  
F. Javier Ortiz-Sánchez ◽  
...  
2020 ◽  
Vol 21 (02) ◽  
pp. 73-85
Author(s):  
Okan Külköylüoğlu ◽  
Mehmet Yavuzatmaca ◽  
Derya Akdemir

Patterns of species occurrence, dispersion ability, habitat preferences and sampling time can be important factors on the species composition. To understand effective roles of these factors on non-marine ostracods, samples were collected from 98 different shallow aquatic bodies from Osmaniye and Kilis provinces in Turkey. Total of 16 and 12 species were identified from the two provinces, respectively. All species are reported new for these provinces. Three species (Heterocypris incongruens, Ilyocypris inermis, I. bradyi) demonstrated the most frequent occurrences and abundances in up to seven different habitats. Species diversity and abundance were at least two times higher in natural habitats (streams, creeks) than artificial habitats (reservoirs, troughs). Numbers of species with and without swimming setae on the second antenna was not significantly different between lentic and lotic habitats. A positive co-occurrence pattern was found between Neglecandona neglecta and I. inermis while the rest of the species pairs exhibited random co-occurrences to each other. Canonical Correspondence Analysis showed 80.8% of correlation between species and environmental variables when water temperature was the major effective factor (P<0.05) on species occurrence. Sampling time did not make difference on the numbers of species between morning (06:30-11:58 a.m.) and after noon (12:05-19:52 p.m.). Results suggest that species occurrence seems to be related to species-specific characteristics in its n-dimensional niche where species deals with several other factors.


2011 ◽  
pp. 48-56
Author(s):  
Victoria Wojcik

Urban landscapes include a mix of biotic and anthropogenic elements that can interact with and influence species occurrence and behaviour. In order to outline the drivers of bee (Hymenoptera: Apoidea) occurrence in tropical urban landscapes, foraging patterns and community characteristics were examined at a common and broadly attractive food resource, Tecoma stans (Bignoniaceae). Bee visitation was monitored at 120 individual resources in three cities from June 2007 to March 2009. Resource characteristics, spatial distribution, and other local and regional landscape variables were assessed and then used to develop descriptive regression models of forager visitation. The results indicated that increased bee abundance and taxon richness consistently correlated with increased floral abundance. Resource distribution was also influential, with more spatially aggregated resources receiving more foragers. Individual bee guilds had differential responses to the variables tested, but the significant impact of increased floral abundance was generally conserved. Smaller bodied bee species responded to floral abundance, resource structure, and proximity to natural habitats, suggesting that size-related dispersal abilities structure occurrence patterns in this guild. Larger bees favoured spatially aggregated resources in addition to increased floral abundance, suggesting an optimization of foraging energetics. The impact of the urban matrix was minimal and was only seen in generalist feeders (African honey bees). The strongly resource-driven foraging dynamics described in this study can be used to inform conservation and management practices in urban landscapes. download Appendix


2020 ◽  
Vol 287 (1937) ◽  
pp. 20202116
Author(s):  
Giovanni Tamburini ◽  
Giacomo Santoiemma ◽  
Megan E. O'Rourke ◽  
Riccardo Bommarco ◽  
Rebecca Chaplin-Kramer ◽  
...  

Recent synthesis studies have shown inconsistent responses of crop pests to landscape composition, imposing a fundamental limit to our capacity to design sustainable crop protection strategies to reduce yield losses caused by insect pests. Using a global dataset composed of 5242 observations encompassing 48 agricultural pest species and 26 crop species, we tested the role of pest traits (exotic status, host breadth and habitat breadth) and environmental context (crop type, range in landscape gradient and climate) in modifying the pest response to increasing semi-natural habitats in the surrounding landscape. For natives, increasing semi-natural habitats decreased the abundance of pests that exploit only crop habitats or that are highly polyphagous. On the contrary, populations of exotic pests increased with an increasing cover of semi-natural habitats. These effects might be related to changes in host plants and other resources across the landscapes and/or to modified top-down control by natural enemies. The range of the landscape gradient explored and climate did not affect pests, while crop type modified the response of pests to landscape composition. Although species traits and environmental context helped in explaining some of the variability in pest response to landscape composition, the observed large interspecific differences suggest that a portfolio of strategies must be considered and implemented for the effective control of rapidly changing communities of crop pests in agroecosystems.


2020 ◽  
Vol 12 (3) ◽  
pp. 15364-15369
Author(s):  
Animesh Talukdar ◽  
Bivash Pandav ◽  
Parag Nigam

Interactions between wildlife and livestock have increased over time with increased anthropogenic pressure on limited available natural habitats.  These interactions have resulted in sharing of pathogens between the species resulting in impacting the wild animals’ fitness and reproduction and further influencing their abundance and diversity.  The spatial overlap between Swamp Deer and livestock was studied at Jhilmil Jheel Conservation Reserve (JJCR), Uttarakhand and Kishanpur Wildlife Sanctuary (KWLS), Uttar Pradesh in India, having different levels of interaction with livestock.  The prevalence, load and commonality of gastro-intestinal parasites in the species was studied through coprological examination. Parasitic ova of Strongyle sp., Trichostrongylus sp., Fasciola sp., and Moniezia sp. Amphistomes were encountered in swamp deer and livestock from both the sites. The parasitic species richness and prevalence however, varied between JJCR and KWLS.  The study recorded significant differences between the parasitic load in Swamp Deer with the eggs per gram of 487.5±46.30 at JJCR and 363.64±49.97 at KWLS at varying levels of livestock interactions.


Larvae of many marine invertebrates must capture and ingest particulate food in order to develop to metamorphosis. These larvae use only a few physical processes to capture particles, but implement these processes using diverse morphologies and behaviors. Detailed understanding of larval feeding mechanism permits investigators to make predictions about feeding performance, including the size spectrum of particles larvae can capture and the rates at which they can capture them. In nature, larvae are immersed in complex mixtures of edible particles of varying size, density, flavor, and nutritional quality, as well as many particles that are too large to ingest. Concentrations of all of these components vary on fine temporal and spatial scales. Mechanistic models linking larval feeding mechanism to performance can be combined with data on food availability in nature and integrated into broader bioenergetics models to yield increased understanding of the biology of larvae in complex natural habitats.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Stefanos Kostas ◽  
Stefanos Hatzilazarou ◽  
Elias Pipinis ◽  
Anastasios Vasileiadis ◽  
Panagiotis Magklaras ◽  
...  

Pistacia lentiscus L. is a dioecious shrub or small tree with high drought resistance, native in the entire Mediterranean basin. The variety ‘Chia’ (mastic tree) is cultivated for the production of mastic gum (a resin produced after wounding of the trunks and thick branches) in the Island of Chios (Greece), but it also has a significant ornamental value. In the present study, ten male and ten female genotypes of P. lentiscus var. Chia from the natural habitats of Chios were selected and examined with respect to the rooting efficiency of their shoot cuttings. The germination ability of the seeds was also tested. The 20 plants were morphologically described, mainly with respect to traits related to their ornamental value. Furthermore, leaves were collected from the 20 genotypes, from which genomic DNA (gDNA) was isolated, followed by amplification of gDNA fragments using the polymerase chain reaction (PCR) and inter simple sequence repeat (ISSR) primers. This was done aiming both at the determination of their genetic distance and the establishment of possible correlations between the amplified bands and certain morphological traits. The results of the study showed that there were differences among the genotypes for both methods of propagation. Regarding the rooting of the shoot cuttings, the best genotype was 8M (cv. ‘Psilophyllos’), achieving a rooting rate of 62.5% in winter with the application of indolebutyric acid (potassium salt of IBA), while regarding the seed germination capacity the genotype 2F exhibited the highest germination rate (57%). Genetic analysis using ISSRs separated the plants into four groups, one group consisting of male genotypes, one of the female genotypes, one consisting of members from both genders and a fourth containing a single male genotype. The genetic analysis of the male genotypes only produced a dendrogram showing the cultivars clustering in three different groups. Regardless of the genetic analysis, it seems that there were correlations between the ISSR markers and the leaf traits and also the gender and the asexual propagation. These correlations can assist future breeding programs of P. lentiscus var. Chia.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 701
Author(s):  
Lorenzo Tonina ◽  
Giulia Zanettin ◽  
Paolo Miorelli ◽  
Simone Puppato ◽  
Andrew G. S. Cuthbertson ◽  
...  

The strawberry blossom weevil (SBW), Anthonomus rubi, is a well-documented pest of strawberry. Recently, in strawberry fields of Trento Province (north-east Italy), new noteworthy damage on fruit linked to SBW adults was observed, combined with a prolonged adult activity until the autumn. In this new scenario, we re-investigated SBW biology, ecology, monitoring tools, and potential control methods to develop Integrated Pest Management (IPM) strategies. Several trials were conducted on strawberry in the laboratory, field and semi-natural habitats. The feeding activity of adult SBW results in small deep holes on berries at different stages, causing yield losses of up to 60%. We observed a prolonged survival of newly emerged adults (>240 days) along with their ability to sever flower buds without laying eggs inside them in the same year (one generation per year). SBW adults were present in the strawberry field year-round, with movement between crop and no crop habitats, underlying a potential role of other host/feeding plants to support its populations. Yellow sticky traps combined with synthetic attractants proved promising for both adult monitoring and mass trapping. Regarding control, adhesive tapes and mass trapping using green bucket pheromone traps gave unsatisfactory results, while the high temperatures provided by the black fabric, the periodic removal of severed buds or adults and Chlorpyrifos-methyl application constrained population build-up. The findings are important for the development of an IPM strategy.


Sign in / Sign up

Export Citation Format

Share Document