The Grain for Green project eliminated the effect of soil erosion on organic carbon on China’s Loess Plateau between 1980 and 2008

2021 ◽  
Vol 322 ◽  
pp. 107636
Author(s):  
Jingjing Wang ◽  
Zhipeng Liu ◽  
Jianlun Gao ◽  
Lugato Emanuele ◽  
Yongqing Ren ◽  
...  
2021 ◽  
Author(s):  
Yuan Zhong ◽  
Chunmei Wang ◽  
Guowei Pang ◽  
Qinke Yang ◽  
Zitian Guo ◽  
...  

<p>Soil erosion is an important threat in the high-quality development of the Loess Plateau of China, and Ephemeral Gully (EG) erosion is an important erosion type. Answering the distribution characteristics of EG at the regional scale is an important basis for EG control. The regional distribution of EG and the areas that still at high risk of EG development after the 'Grain for Green Project' since more than 20 years ago remain poorly understood. This study aimed to solve the above problems by using visual interpretation based on sub-meter Google Earth images in 137 systematically selected small watersheds in the Loess Plateau. The EG density, length, land use of the hillslope where each EG existed, and other parameters were obtained and analyzed using the GIS method. The spatial distribution of EG density, average length, and spatial correlation in the Loess Plateau was explored. The current EG distribution and key prevention areas in the Loess Plateau were identified. The results showed that: (1) EGs were found in 46 surveyed watersheds accounting for 33.6% of the total watershed number, with an EG density average value of 3.41km/km<sup>2</sup> and maximum value of 21.92 km/km<sup>2</sup>. The average number of EG was 60.32/km<sup>2</sup>. EG length was mainly distributed in 20 ~ 60 m, with an average length of 63.31 m; The critical slope length of EGs was mainly 40 ~ 60 m, with an average 56.20 m. (2) The watersheds with EGs were mainly located in the north-central, the west, and northwest of the Loess Plateau. EG erosion is extremely strong in loess hilly and gully region, and moderate in loess plateau gully region.(3) 38.3% of EG was distributed in cropland; 35.3% distributed in grassland; 22.8% distributed in forest land. After the 'Grain for Green Project', the EGs that were still distributed on cropland were a more important threat to soil erosion and need better prevention efforts. EGs located on cropland were still widely distributed in many areas of Loess Plateau, such as the northwest of Yan 'an City in the middle and upper reaches of Beiluo River, Suide and Luliang in the lower reaches of Wuding River, at the junction of Dingxi and Huining and in Qingyang area. This research would help in a more reasonable distribution of erosion control practices in the Loess Plateau.</p>


Author(s):  
Xiaofeng WANG ◽  
Feiyan XIAO ◽  
Xiaoming FENG ◽  
Bojie FU ◽  
Zixiang ZHOU ◽  
...  

ABSTRACTSoil conservation on the Loess Plateau is important not only for local residents but also for reducing sediment downstream in the Yellow River. In this paper, we report a decrease in soil erosion from 2000 to 2010 as a result of the ‘Grain for Green' (GFG) Project. By using the Revised Universal Soil Loss Equation and data on land cover, climate and sediment yield, we found that soil erosion decreased from 6579.55tkm–2yr–1 in 2000 to 1986.66tkm–2yr–1 in 2010. During this period, there was a major land cover change from farmland to grassland in response to the GFG. The area of low vegetation coverage with severe erosion decreased dramatically, whereas the area of high vegetation coverage with slight erosion increased. Our study demonstrates that the reduction in soil erosion on the Loess Plateau contributed to the decrease in the sediment concentration in the Yellow River.


2018 ◽  
Vol 10 (12) ◽  
pp. 2032 ◽  
Author(s):  
Miao Sun ◽  
Qin’ge Dong ◽  
Mengyan Jiao ◽  
Xining Zhao ◽  
Xuerui Gao ◽  
...  

Jointly influenced by natural factors and artificial protection measures in recent years, the vegetation coverage of the Loess Plateau has significantly increased. However, extensive vegetation recovery can result in massive water consumption and a severe soil water deficit, which poses a great threat to the sustainable development of the regional ecological system. Maintaining the balance between precipitation and water consumption is an important foundation of ecological security in the Loess Plateau. Based on this, the present study used the GRACE (Gravity Recovery and Climate Experiment) gravity satellite data to simulate the annual actual water consumption from 2003 to 2014 and to analyze the temporal and spatial evolution of the regional precipitation and the actual evapotranspiration (AET). This study also applied the newly developed rainwater utilization potential index (IRUP) to quantify the sustainability of the water balance in the Loess Plateau. The spatial-temporal patterns of precipitation, potential evapotranspiration, and AET from 2003 to 2014 in the Loess Plateau were all analyzed in this study. Based on the results, the annual average precipitation (AAP) and AET in the entire Loess Plateau had significant increasing trends. The analysis of the spatial distribution reveals that the AET was decreasing from the southeast to the northwest in the Loess Plateau. However, the average values of potential evapotranspiration did not obviously change. Based on the estimated AET result, it was determined that the average IRUP had an increasing trend. The increase in the IRUP is due to an increased rate of precipitation that is statistically higher than that of the AET. Consequently, the Loess Plateau experienced a wetting trend during the period of 2003–2014, especially after the Grain for Green project was implemented. The results in this paper were proven by using three different depths of ERA-Interim (a global atmospheric reanalysis product created by the European Centre for Medium-Range Weather Forecasts) soil water content data from the same period and the observed runoff data from 18 different hydrological sites. Consequently, it seems that the vegetation could maintain a sustainable growth with the implementation of the Grain for Green Project.


2020 ◽  
Author(s):  
Peng Shi ◽  
Yan Zhang ◽  
Kexin Lu ◽  
Zhaohong Feng ◽  
Yang Yu

<p>Vegetation restoration, terrace and check dam construction are the major measures for soil and water conservation on the Loess Plateau. These effective measures of stabilizing soils have significant impacts on soil organic carbon (SOC) distribution. To understand the impact of land-use changes combined with check dam construction on SOC distribution, 1060 soil samples were collected across a watershed on the Loess Plateau. Forestland, shrubland and terrace had significant higher SOC concentrations in the 0-20 cm soil layer than that of sloping cropland.    Land use change affects the process of runoff and sediment transportation, which has an impact on the migration and transformation of soil carbon. The soil erosion of sloping farmland is the most serious, and the maximum annual erosion rate is as high as 10853.56 t·km<sup>-2</sup>. Carbon sedimented in the dam land was mainly from sloping cropland, and this source percentage was 65%. The application of hydrological controls to hillslopes and along river channels should be considered when assessing carbon sequestration within the soil erosion subsystem. </p>


Sign in / Sign up

Export Citation Format

Share Document