The lagging movement of soil nitrate in comparison to that of soil water in the 500-cm soil profile

2022 ◽  
Vol 326 ◽  
pp. 107811
Author(s):  
Yan Zhang ◽  
Xiu Dong ◽  
Xianlong Yang ◽  
Tito Munyampirwa ◽  
Yuying Shen
Keyword(s):  
1992 ◽  
Vol 32 (4) ◽  
pp. 473 ◽  
Author(s):  
G Gibson ◽  
BJ Radford ◽  
RGH Nielsen

The effects of tillage frequency (conventional, reduced and zero), primary tillage implement (disc, blade and chisel plough), stubble management (retention and removal), gypsum application, and paraplowing were examined with respect to soil water storage, soil nitrate accumulation, crop establishment, crop growth, grain yield and grain nitrogen content for 4 successive sorghum crops on a sodic, texture-contrast soil in south west Queensland. Retention of sorghum stubble (v. removal) produced an increase in mean yield of sorghum grain of 393 kg/ha, due to increased soil water extraction and increased water use efficiency by the following crop. The highest mean yield occurred after reduced blade tillage with stubble retained. Zero tillage with stubble removed gave the lowest mean grain yield. Zero tillage always had the lowest quantity of soil nitrate-nitrogen at sowing. In one fallow, increased aggressiveness of primary tillage (disc v. blade plough) increased the quantity of nitrate-nitrogen in the top 60 cm of soil at sowing. These effects on available soil nitrogen did not result in corresponding differences in grain nitrogen content. Results indicate that for optimum fallow management on this texture-contrast soil in south west Queensland, sorghum residues should be retained, tillage frequency should be reduced, but not to zero, blade ploughing should be preferred to discing, and gypsum application should not be practised.


RBRH ◽  
2020 ◽  
Vol 25 ◽  
Author(s):  
Jens Hagenau ◽  
Vander Kaufmann ◽  
Heinz Borg

ABSTRACT TDR-probes are widely used to monitor water content changes in a soil profile (ΔW). Frequently, probes are placed at just three depths. This raises the question how well such a setup can trace the true ΔW. To answer it we used a 2 m deep high precision weighing lysimeter in which TDR-probes are installed horizontally at 20, 60 and 120 cm depth (one per depth). ΔW-data collected by weighing the lysimeter vessel were taken as the true values to which ΔW-data determined with the TDR-probes were compared. We obtained the following results: There is a time delay in the response of the TDR-probes to precipitation, evaporation, transpiration or drainage, because a wetting or drying front must first reach them. Also, the TDR-data are more or less point measurements which are then extrapolated to a larger soil volume. This frequently leads to errors. For these reasons TDR-probes at just three depths cannot provide reliable data on short term (e.g. daily) changes in soil water content due to the above processes. For longer periods (e.g. a week) the data are better, but still not accurate enough for serious scientific studies.


2021 ◽  
Vol 64 (2) ◽  
pp. 461-474
Author(s):  
Mohammad J. Anar ◽  
Zhulu Lin ◽  
Liwang Ma ◽  
Amitava Chatterjee

HighlightsFour crop growth modules in RZWQM2 were calibrated for four sugarbeet rotation sequences.Sugarbeet following wheat had a slightly higher yield (3% to 6.5%).Moldboard plow increased sugarbeet yield by 1% to 2%.The difference in N losses under different crop rotations and tillage operations was negligible.Abstract. Sugarbeet (Beta vulgaris) is considered to be one of the most viable alternatives to corn for biofuel production as it may be qualified as the feedstock for advanced biofuels (reducing greenhouse gas emission by 50%) under the Energy Independence and Security Act (EISA) of 2007. Because sugarbeet production is affected by crop rotation and tillage through optimal use of soil water and nutrients, simulation of these effects will help in making proper management decisions. In this study, the CSM-CERES-Beet, CSM-CERES-Maize, CROPSIM-Wheat, and CROPGRO-Soybean models included in the RZWQM2 were calibrated against experimental field data of crop yield, soil water, and soil nitrate from the North Dakota State University Carrington Research Extension Center from 2014 to 2016. The models performed reasonably well in simulating crop yield, soil water, and nitrate (rRMSE = 0.055 to 2.773, d = 0.541 to 0.997). Simulation results identified a non-significant effect of crop rotation on sugarbeet yield, although sugarbeets following wheat resulted in 3% to 6.5% higher yields compared to other crops. Net mineralization and N uptake rates were slightly higher when sugarbeets followed wheat compared to the other crops. Seasonal N and water mass balances also showed lower N and water stresses when sugarbeets followed wheat. The effects of tillage operations on sugarbeet yield were also non-significant. The difference in the N losses to runoff and drainage from the sugarbeet fields under different crop rotations and tillage operations was negligible. As sugarbeet production may be expanded into nontraditional planting areas in the Red River Valley due to potential demand for biofuel production, our findings will help to assess the associated environmental impacts and identify suitable crop rotations and management scenarios in the region. Keywords: Biofuel, Crop rotation, RZWQM2, Sugarbeet, Tillage.


2011 ◽  
Vol 50 (No. 8) ◽  
pp. 333-338 ◽  
Author(s):  
R. Kodešová ◽  
J. Kozák ◽  
O. Vacek

The transport of chlorotoluron in the soil profile under field conditions was studied. The herbicide Syncuran was applied on a four square meter plot using an application rate of 2.5 kg/ha active ingredient. Soil samples were taken after 119 days to study the residual chlorotoluron distribution in the soil profile. HYDRUS-1D (Šimůnek et al. 1998) was used to simulate water movement and herbicide transport in the soil profile. Soil hydraulic properties and their variability were studied previously by Kutílek et al. (1989). The solute transport parameters, like the adsorption isotherm and the degradation rate, were determined in the laboratory. The Freundlich and Langmuir equations were used to fit the experimental data points of the adsorption isotherm, and the affect of each type of adsorption isotherm equation on the solute transport was studied. The chlorotoluron concentrations in soil water tended to be higher for the simulation performed with the Freundlich isotherm then that of the model using the Langmuir isotherm. In both cases, the solution did not pass a depth of8 cm. The simulated chlorotoluron concentrations in soil samples were higher then the observed concentrations when the chlorotoluron degradation was assumed to be in soil water only. Assumption of the solute degradation in both in the solid and the liquid phase significantly improved the accuracy of the solution. The different characters of the simulated and observed chlorotoluron distributions can probably be attributed to the preferential flow of water and solute in the soil profile and by variability of the transport parameters.


1994 ◽  
Vol 34 (7) ◽  
pp. 1085 ◽  
Author(s):  
L Cai ◽  
SA Prathapar ◽  
HG Beecher

A modelling study was conducted to evaluate water and salt movement within a transitional red-brown earth with saline B horizon soil when such waters are used for ponding in summer. The model was calibrated using previously published experimental data. The calibrated model was used to evaluate the effect of depth to watertable, saturated hydraulic conductivity, and ponding water salinity on infiltration, water and salt movement within the soil profile, and recharge. The study showed that when initial soil water content and the saturated hydraulic conductivity (Ks) are low, infiltrating water will be stored within the soil profile even in the absence of a shallow watertable. Once the soil water content is high, however, recharge will be significant in winter, even if there is no net infiltration at the soil surface. Infiltration rates depend more on Ks than the depth to watertable if it is at, or below, 1.5 m from the soil surface. When Ks is high, recharge under ponding will be higher than that under winter fallow. Subsequent ponding in summer and fallow in winter tend to leach salts from the soil profile, the leaching rate dependent on Ks. During winter fallow, due to net evaporation, salts tend to move upwards and concentrate near the soil surface. In the presence of shallow watertables, leached salts tend to concentrate at, or near, the watertable.


2014 ◽  
Vol 17 (1) ◽  
pp. 1-4
Author(s):  
Ľuboš Jurík ◽  
Tatiana Kaletová

Abstract The soil water storage in a soil profile was calculated from the measured values of volumetric soil water content by the Profile Probe PR2/6 (Delta-T Device Ltd.) in the Bocegaj catchment in the depth up to 1m. The monitored season in the year 2009 followed after a dry season, and in the year 2010, rainfalls were above the average values. The soil water storage was higher than the mean value of field capacity during the season with high precipitation events. With a decreased amount of rainfalls, rising air temperature and crops growing, the soil water storage was in recession. In the vertical direction, the volumetric soil moisture as well as soil water storage in every soil profile have their characteristic progresses.


2013 ◽  
Vol 790 ◽  
pp. 202-205
Author(s):  
Hui Yan Gao ◽  
Lu Hua Yang ◽  
Tian Li ◽  
Zi Peng Guo

Soil moisture and nitrate nitrogen were measured respectively in planting area and non-planting area in RANZHUANG experiment station from 2011 to 2012. The effect of human activity on soil moisture and nitrate nitrogen was analyzed. The results show that soil moisture content varies from 8.61% to 30.09% within 0~250cm depth and is tended to be stable below 250cm deep layer in non-planting area. The distribution of soil nitrate nitrogen is a single peak curve, the peak moves downward at a speed of 0.81cm/d in percolation of rainfall. Soil moisture varies form 21.23% to 41.67% within 0~400cm depth and is tended to be stable below 400cm deep layer in planting area. Nitrate nitrogen is mainly accumulated at 0~100cm deep soil layer in the wheat growth period. In the maize growth period, the distribution of nitrate nitrogen is double peak curve in 0~500cm soil profile. The upper peak occurs at 40~100cm soil layer, the peak of nitrate nitrogen content is between 26.7~54.6mg/kg; the lower emerges at 150~260cm soil profile, the value is between 36.7~106.36mg/kg. Deep percolation of the nitrate nitrogen is obvious due to unreasonable irrigation and fertilization. The nitrate nitrogen content accounts for 52.3% of the total nitrate nitrogen below the root zone soil, which is a potential contamination source of groundwater.


2020 ◽  
Author(s):  
Felix Abayomi Ogunmokun ◽  
Rony Wallach

<p>Soil water repellency is a common feature of dry soils under permanent vegetation and drought conditions. Soil-water hydrology is markedly affected by soil-water repellency as it hinders infiltration, leading to enhanced surface runoff and soil erosion. Although this phenomenon was primarily ascribed to sandy soils, it has been observed in loam, clay, and peat soils in dry and humid regions. One detrimental effect of soil water repellency on plants is the reduction of soil water availability that stems from the non-uniform water retention and flow in preferential pathways (gravity-induced fingers) with relatively dry soil volume among these paths. It was recently discovered that prolonged irrigation with treated wastewater, a widely used alternative in Israel and other Mediterranean countries due to the limited freshwater, triggers soil water repellency which invariably resulted in preferential flow development in the field. Due to climate change events, the use of treated wastewater for irrigation as a means of freshwater conservation is expected to widen, including in countries that are not considered dry.</p><p>While a vast amount of research has been devoted to characterizing the preferential flow in water repellent soils, the effect of this flow regime on the spatial distribution of salt and fertilizers in the root zone was barely investigated. Results from a commercial citrus orchard irrigated with treated wastewater that includes the spatial and temporal distribution of preferential flow in the soil profile measured by ERT will be demonstrated. The associated spatial distribution of salinity, nitrate, phosphate, and SAR in the soil profile will be shown as well.  We investigated the efficacy of two nonionic surfactants application to remediate hydrophobic sandy soils both in the laboratory and field. The effect of the surfactant application to the water repellent soils in the orchards on the spatial distribution of soil moisture and the associated agrochemicals will be presented and discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document