Estimating soil moisture storage change using quasi-terrestrial water balance method

2011 ◽  
Vol 102 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Juana Paul Moiwo ◽  
Fulu Tao ◽  
Wenxi Lu
2020 ◽  
Vol 33 (2) ◽  
pp. 511-525 ◽  
Author(s):  
Shanshan Deng ◽  
Suxia Liu ◽  
Xingguo Mo

AbstractTerrestrial water storage change (TWSC) plays a crucial role in the hydrological cycle and climate system. To date, methods including 1) the terrestrial water balance method (PER), 2) the combined atmospheric and terrestrial water balance method (AT), and 3) the summation method (SS) have been developed to estimate TWSC, but the accuracy of these methods has not been systematically compared. This paper compares the spatial and temporal differences of the TWSC estimates by the three methods comprehensively with the GRACE data during the 2002–13 period. To avoid the impact of different inputs in the comparison, three advanced reanalysis datasets are used, namely 1) the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) Reanalysis II (NCEP R2), 2) the ECMWF interim reanalysis (ERA-Interim), and 3) the Japanese 55-Year Reanalysis (JRA-55). The results show that all estimates with PER and AT considerably overestimate the long-term mean on a regional scale because the data assimilation in the reanalysis opens the water budget. The difficulty of atmospheric observation and simulation in arid and polar tundra regions is the documented reason for the failure of the AT method to represent the TWSC phase over 30% of the region found in this study. Although the SS result exhibited the best overall agreement with GRACE, the amplitude of TWSC based on SS differed substantially from that of GRACE and the similarity coefficient of the global distribution between the SS-derived estimate and GRACE is still not high. More detailed considerations of groundwater and human activities, for example, irrigation and reservoir impoundments, can help SS to achieve a higher accuracy.


1967 ◽  
Vol 69 (1) ◽  
pp. 95-101 ◽  
Author(s):  
W. R. Stern

In a series of five irrigated cotton sowings (T2, T7, T9, T11, T14) evapotranspiration (Et) was determined for the period between October 1961 and October 1962 by observing frequently the changes in soil moisture storage, calculating through drainage, and solving for evapotranspiration in the water balance equation. Thus a water balance was obtained for each sowing extending over the entire crop.The average evapotranspiration in wet season sowings was of the order of 6·5 mm day−1 and in dry season sowings of the order of 4·5 mm day−1. The highest evapotranspiration values ranged between 10 and 12 mm day−1 in T2, T7 and T9 and between 7 and 9·5 mm day−1 in T11 and T14.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 279-286
Author(s):  
N. CHATTOPADHYAY ◽  
S. S. VYAS ◽  
B. K. BHATTACHARYA ◽  
N. S. TIDKE ◽  
N. G. DHANGAR

Under the present study estimation of high resolution soil moisture (SM) under Pan India mode using simple water balance method and from satellite data has been explored. It aims at the simple calculation of soil moisture followed by verification with ground truth data of SM on spatial and temporal scale (WC) as climatic input. The model has been verified for winter (January-February), pre-monsoon (March-May), monsoon (June-September) and post-monsoon (October-December) seasons of year 2013. The comparison of model estimates with the in-situ data from 17 ground stations (for 396 paired datasets) over different seasons produced a better correlation coefficient varying from 0.46 to 0.60. The spatial comparison of SM estimated from model and satellite SM for the monsoon season shows a greater degree of coherence over most parts of India. Model derived weekly gridded SM combined with higher resolution satellite SM could use simple formulation and minimum inputs in conjunction with geographic information system (GIS). The SM is calculated on weekly basis and using gridded rainfall, potential evapotranspiration (PET) and field capacity (FC) and wilting point be used for better accuracy of the proposed block level agrometadvisory services.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjie Yin ◽  
Litang Hu ◽  
Shin-Chan Han ◽  
Menglin Zhang ◽  
Yanguo Teng

Terrestrial water storage (TWS) is a key element in the global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a highly valuable dataset, which allows the study of TWS over larger river basins worldwide. However, the lifetime of GRACE is too short to demonstrate long-term variability in TWS. In the Beishan area of northwestern China, which is selected as the most prospective site for high-level radioactive waste (HLRW) disposal, the assessment of long-term TWS changes is crucial to understand disposal safety. Monthly and annual TWS changes during the past 35 years are reconstructed using GRACE data, other remote sensing products, and the water balance method. Hydrological flux outputs from multisource remote sensing products are analyzed and compared to select appropriate data sources. The results show that a decreasing trend is found for GRACE-filtered and Center for Space Research (CSR) mascon solutions from 2003 to 2015, with slopes of −2.30 ± 0.52 and −1.52 ± 0.24 mm/year, respectively. TWS variations independently computed from the water balance method also show a similar decreasing trend with the GRACE observations, with a slope of −0.94 mm/year over the same period. Overall, the TWS anomalies in the Beishan area change seasonally within 10 mm and have been decreasing since 1980, keeping a desirable dry condition as a HLRW disposal site.


2016 ◽  
Vol 538 ◽  
pp. 82-95 ◽  
Author(s):  
Wenbin Liu ◽  
Lei Wang ◽  
Jing Zhou ◽  
Yanzhong Li ◽  
Fubao Sun ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowan Liu ◽  
Dingzhi Peng ◽  
Zongxue Xu

Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1884 ◽  
Author(s):  
Guojie Wang ◽  
Jian Pan ◽  
Chengcheng Shen ◽  
Shijie Li ◽  
Jiao Lu ◽  
...  

Evapotranspiration (ET), a critical process in global climate change, is very difficult to estimate at regional and basin scales. In this study, we evaluated five ET products: the Global Land Surface Evaporation with the Amsterdam Methodology (GLEAM, the EartH2Observe ensemble (E2O)), the Global Land Data Assimilation System with Noah Land Surface Model-2 (GLDAS), a global ET product at 8 km resolution from Zhang (ZHANG) and a supplemental land surface product of the Modern-ERA Retrospective analysis for Research and Applications (MERRA_land), using the water balance method in the Yellow River Basin, China, including twelve catchments, during the period of 1982–2000. The results showed that these ET products have obvious different performances, in terms of either their magnitude or temporal variations. From the viewpoint of multiple-year averages, the MERRA_land product shows a fairly similar magnitude to the ETw derived from the water balance method, while the E2O product shows significant underestimations. The GLEAM product shows the highest correlation coefficient. From the viewpoint of interannual variations, the ZHANG product performs best in terms of magnitude, while the E2O still shows significant underestimations. However, the E2O product best describes the interannual variations among the five ET products. Further study has indicated that the discrepancies between the ET products in the Yellow River Basin are mainly due to the quality of precipitation forcing data. In addition, most ET products seem to not be sensitive to the downward shortwave radiation.


2015 ◽  
Vol 10 (24) ◽  
pp. 2407-2414 ◽  
Author(s):  
Greco de Guimaraes Cardoso Gabriel ◽  
Campos de Oliveira Renato ◽  
Batista Teixeira Marconi ◽  
Sergio Dorneles Milton ◽  
Marcos Oliveira Domingos Romenig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document