Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China

2021 ◽  
Vol 248 ◽  
pp. 106778
Author(s):  
Jing Zheng ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Jinjin Guo ◽  
Shicheng Yan ◽  
...  
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1640 ◽  
Author(s):  
Li-Li Zhao ◽  
Lu-Sheng Li ◽  
Huan-Jie Cai ◽  
Xiao-Hu Shi ◽  
Chao Zhang

Organic amendments improve general soil conditions and stabilize crop production, but their effects on the soil hydrothermal regime, root distribution, and their contributions to water productivity (WP) of maize have not been fully studied. A two-year field experiment was conducted to investigate the impacts of organic amendments on soil temperature, water storage depletion (SWSD), root distribution, grain yield, and the WP of summer maize (Zea mays L.) in the Guanzhong Plain of Northwest China. The control treatment (CO) applied mineral fertilizer without amendments, and the three amended treatments applied mineral fertilizer with 20 Mg ha−1 of wheat straw (MWS), farmyard manure (MFM), and bioorganic fertilizer (MBF), respectively. Organic amendments decreased SWSD compared to CO, and the lowest value was obtained in MBF, followed by MWS and MFM. Meanwhile, the lowest mean topsoil (0–10 cm) temperature was registered in MWS. Compared to CO, organic amendments generally improved the root length density (RLD) and root weight density (RWD) of maize. MBF showed the highest RLD across the whole soil profile, while MWS yielded the greatest RWD to 20 cm soil depth. Consequently, organic amendments increased grain yield by 9.9–40.3% and WP by 8.6–47.1% compared to CO, and the best performance was attained in MWS and MBF. We suggest that MWS and MBF can benefit the maize agriculture in semi-arid regions for higher yield, and WP through regulating soil hydrothermal conditions and improving root growth.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zheng Liu ◽  
Ningning Yu ◽  
James J. Camberato ◽  
Jia Gao ◽  
Peng Liu ◽  
...  

AbstractIn pursuit of maximum grain yield farmers in the North China Plain usually apply excessive N fertilizer, resulting in wasted resources and environmental pollution. To assess the economic and environmental performances of different nitrogen rates will be conductive to sustain cleaner crop production. An 8-year field experiment was carried out with four treatments, N0 (0 kg ha−1 for winter wheat and summer maize), N1 (168 kg ha−1 for winter wheat and 129 kg ha−1 for summer maize), N2 (240 kg ha−1 for winter wheat and 185 kg ha−1 for summer maize) and N3 (300 kg ha−1 for winter wheat and summer maize), on the double cropping at Dawenkou research field (36°11’N, 117°06’E), Shandong Province, China. The crop production, soil physical-chemical parameters, and greenhouse gas emission are measured and the economic and environmental performances are assessed. The optimal nitrogen rate obtained the highest grain yield of summer maize in 4 of 8 year and was equivalent to conventional N rate in the other years. The nitrogen partial factor productivity and agronomic efficiency of optimal nitrogen rate was 63% and 58% higher than that of conventional nitrogen rate. The optimal nitrogen rate effectively decreased soil bulk density and increased weight percentage of water-stable aggregate and activities of urease and invertase compared to conventional nitrogen rate, which improved soil productivity. The fertilizer nitrogen loss and global warming potential of optimal nitrogen rate reduced by 76% and 35% compared to conventional nitrogen rate. The annual greenhouse gas intensity of optimal nitrogen rate decreased by 14–35% compared to others. The net ecosystem economic budget under optimal nitrogen rate is 252–604 $ ha−1 yr.−1 higher than other addition levels. The optimal nitrogen rate produces more grains and obtains higher economic and environmental benefits.


2020 ◽  
Vol 10 (5) ◽  
pp. 884-897 ◽  
Author(s):  
Ei Phyu Win ◽  
Kyaw Kyaw Win ◽  
Sonoko D. Bellingrath‐Kimura ◽  
Aung Zaw Oo

2020 ◽  
Author(s):  
Yaojun Zhang ◽  
Jiaqi Ding ◽  
Hong Wang ◽  
Lei Su ◽  
Cancan Zhao

Abstract Background: Environmental stress is a crucial factor restricting plant growth as well as crop productivity, thus influencing the agricultural sustainability. Biochar addition is proposed as an effective management to improve crop performance. However, there were few studies focused on the effect of biochar addition on crop growth and productivity under interactive effect of abiotic stress (e.g., drought and salinity). This study was conducted with a pot experiment to investigate the interaction effects of drought and salinity stress on soybean yield, leaf gaseous exchange and water use efficiency (WUE) under biochar addition. Results: Drought and salinity stress significantly depressed soybean phenology (e.g. flowering time) and all the leaf gas exchange parameters, but had inconsistent effects on soybean root growth and WUE at leaf and yield levels. Salinity stress significantly decreased photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate by 20.7%, 26.3%, 10.5% and 27.2%, respectively. Lower biomass production and grain yield were probably due to the restrained photosynthesis under drought and salinity stress. Biochar addition significantly enhanced soybean grain yield by 3.1-14.8%. Drought stress and biochar addition significantly increased WUE-yield by 27.5% and 15.6%, respectively, while salinity stress significantly decreased WUE-yield by 24.2%. Drought and salinity stress showed some negative interactions on soybean productivity and leaf gaseous exchange. But biochar addition alleviate the negative effects on soybean productivity and water use efficiency under drought and salinity stress. Conclusions: The results of the present study indicated that drought and salinity stress could significantly depress soybean growth and productivity. There exist interactive effects of drought and salinity stress on soybean productivity and water use efficiency, while we could employ biochar to alleviate the negative effects. We should consider the interactive effects of different abiotic restriction factors on crop growth thus for sustainable agriculture in the future.


Sign in / Sign up

Export Citation Format

Share Document