External cardiac defibrillation during wet-surface cooling in pigs

2007 ◽  
Vol 25 (4) ◽  
pp. 420-424 ◽  
Author(s):  
Alexandra Schratter ◽  
Wolfgang Weihs ◽  
Michael Holzer ◽  
Andreas Janata ◽  
Wilhelm Behringer ◽  
...  
Keyword(s):  
2018 ◽  
Author(s):  
Jeongmoon Park ◽  
Jorge L. Alvarado ◽  
Leonardo P. Chamorro ◽  
Charles P. Marsh

2019 ◽  
Vol 943 (1) ◽  
pp. 68-75
Author(s):  
S.G. Pugacheva ◽  
E.A. Feoktistova ◽  
V.V. Shevchenko

The article presents the results of astrophysical studies of the Moon’s reflected and intrinsic radiation. We studied the intensity of the Moon’s infrared radiation and, thus, carried out a detailed research of the brightness temperature of the Moon’s visible disc, estimated the thermal inertia of the coating substance by the rate of its surface cooling, and the degree of the lunar soil fragmentation. Polarimetric, colorimetric and spectrophotometric measurements of the reflected radiation intensity were carried out at different wavelengths. In the article, we present maps prepared based on our measurement results. We conducted theresearch of the unique South Pole – Aitken basin (SPA). The altitude profiles of the Apollo-11 and Zond-8 spacecrafts and the data of laser altimeters of the Apollo-16 and Apollo-15 spacecrafts were used as the main material. Basing upon this data we prepared a hypsometric map of SPA-basing global relief structure. A surface topography map of the Moon’s Southern Hemisphere is given in the article. The topography model of the SPA topography surface shows displacement centers of the altitude topographic rims from the central rim. Basing upon the detailed study of the basin’s topography as well as its “depth-diameter” ratio we suggest that the basin originated from the impact of a giant cometary body from the Orta Cloud. In our works, we consider the Moon as a part of the Earth’s space infrastructure. High growth rates of the Earth’s population, irrational nature management will cause deterioration of scarce natural resources in the near future. In our article, we present maps of the natural resources on the Moon pointing out the most promising regions of thorium, iron, and titanium. Probably in 20 or 40 years a critical mining level of gold, diamonds, zinc, platinum and other vital rocks and metals will be missing on the Earth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongdong Wang ◽  
Bin Zhu ◽  
Hongbo Wang ◽  
Li Sun

AbstractIn this study, we designed a sensitivity test using the half number concentration of sulfate in the nucleation calculation process to study the aerosol-cloud interaction (ACI) of sulfate on clouds, precipitation, and monsoon intensity in the summer over the eastern China monsoon region (ECMR) with the National Center for Atmospheric Research Community Atmosphere Model version 5. Numerical experiments show that the ACI of sulfate led to an approximately 30% and 34% increase in the cloud condensation nuclei and cloud droplet number concentrations, respectively. Cloud droplet effective radius below 850 hPa decreased by approximately 4% in the southern ECMR, while the total liquid water path increased by 11%. The change in the indirect radiative forcing due to sulfate at the top of the atmosphere in the ECMR during summer was − 3.74 W·m−2. The decreased radiative forcing caused a surface cooling of 0.32 K and atmospheric cooling of approximately 0.3 K, as well as a 0.17 hPa increase in sea level pressure. These changes decreased the thermal difference between the land and sea and the gradient of the sea-land pressure, leading to a weakening in the East Asian summer monsoon (EASM) and a decrease in the total precipitation rate in the southern ECMR. The cloud lifetime effect has a relatively weaker contribution to summer precipitation, which is dominated by convection. The results show that the ACI of sulfate was one possible reason for the weakening of the EASM in the late 1970s.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1084-1092
Author(s):  
Hongyun Wang ◽  
Wesley A. Burgei ◽  
Hong Zhou

Abstract Pennes’ bioheat equation is the most widely used thermal model for studying heat transfer in biological systems exposed to radiofrequency energy. In their article, “Effect of Surface Cooling and Blood Flow on the Microwave Heating of Tissue,” Foster et al. published an analytical solution to the one-dimensional (1-D) problem, obtained using the Fourier transform. However, their article did not offer any details of the derivation. In this work, we revisit the 1-D problem and provide a comprehensive mathematical derivation of an analytical solution. Our result corrects an error in Foster’s solution which might be a typo in their article. Unlike Foster et al., we integrate the partial differential equation directly. The expression of solution has several apparent singularities for certain parameter values where the physical problem is not expected to be singular. We show that all these singularities are removable, and we derive alternative non-singular formulas. Finally, we extend our analysis to write out an analytical solution of the 1-D bioheat equation for the case of multiple electromagnetic heating pulses.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


Sign in / Sign up

Export Citation Format

Share Document