scholarly journals Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms

Author(s):  
Caroline F. Wright ◽  
Nicholas M. Quaife ◽  
Laura Ramos-Hernández ◽  
Petr Danecek ◽  
Matteo P. Ferla ◽  
...  
Author(s):  
Flora Doffe ◽  
Vincent Carbonnier ◽  
Manon Tissier ◽  
Bernard Leroy ◽  
Isabelle Martins ◽  
...  

AbstractInfrequent and rare genetic variants in the human population vastly outnumber common ones. Although they may contribute significantly to the genetic basis of a disease, these seldom-encountered variants may also be miss-identified as pathogenic if no correct references are available. Somatic and germline TP53 variants are associated with multiple neoplastic diseases, and thus have come to serve as a paradigm for genetic analyses in this setting. We searched 14 independent, globally distributed datasets and recovered TP53 SNPs from 202,767 cancer-free individuals. In our analyses, 19 new missense TP53 SNPs, including five novel variants specific to the Asian population, were recurrently identified in multiple datasets. Using a combination of in silico, functional, structural, and genetic approaches, we showed that none of these variants displayed loss of function compared to the normal TP53 gene. In addition, classification using ACMG criteria suggested that they are all benign. Considered together, our data reveal that the TP53 coding region shows far more polymorphism than previously thought and present high ethnic diversity. They furthermore underline the importance of correctly assessing novel variants in all variant-calling pipelines associated with genetic diagnoses for cancer.


Author(s):  
Denis Furling

Myotonic dystrophy of type 1 (DM1) is one of the most common muscular dystrophy in adults characterized by progressive muscle wasting and weakness, myotonia, cardiac conduction defects, alteration in cognitive functions as well as several other multisystemic symptoms. DM1 is an autosomal dominant inherited disease caused by an unstable CTG expansion ranging from ~50 to more than 1,000 repeats in the 3’ non-coding region of the DMPK gene. Expression of DMPK RNAs with expanded CUG repeats supports a toxic RNA gain-of-function as a pathologic mechanism for DM1. A similar or common mechanism may also be involved in DM type 2 that is caused by CCTG expansion in the first intron of the CNP (ZNF9) gene and shares similar clinical features with DM1 disease. In both myotonic dystrophies, nuclear accumulation of pathogenic CUG/CCUGexp-RNAs alters the activities of the RNA binding proteins such as MBNL1 and CUG-BP1 that leads to alternative splicing mis-regulation of a numerous of transcripts in DM tissues and ultimately, to clinical features of the disease. An overview of the DM splicing mis-regulation will be presented, with focus on mis- regulation of the BIN1 mRNA. In muscle, BIN1 plays an important role in tubular invaginations of the plasma membrane and is required for biogenesis of T-tubules, which are specialized membrane structures essential for excitation-contraction coupling. BIN1 splicing mis-regulation in DM patients due to MBNL1 loss-of-function results in the expression of an inactive form of BIN1 deprived of phosphoinositide-binding and membrane-tubulating activities. Reproducing similar BIN1 mis-splicing defect in the muscles of wild type mice is sufficient to promote T-tubule alterations and muscle strength decrease, suggesting that alteration of BIN1 splicing may contributes to muscle weakness, a prominent feature in DM.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kaio Cezar Rodrigues Salum ◽  
Guilherme Orofino de Souza ◽  
Gabriella de Medeiros Abreu ◽  
Mário Campos Junior ◽  
Fabiana Barzotto Kohlrausch ◽  
...  

BackgroundThe melanocortinergic pathway orchestrates the energy homeostasis and impairments in this system often lead to an increase in body weight. Rare variants in the melanocortin 4 receptor (MC4R) gene resulting in partial or complete loss of function have been described with autosomal co-dominant inheritance. These mutations are the most common cause of non-syndromic monogenic obesity. In this context, this study aimed to sequence the MC4R gene in a Brazilian cohort of adults with severe obesity.MethodsThis study included 163 unrelated probands with Body Mass Index (BMI) ≥ 35 kg/m2, stratified into three groups, according to the period of obesity onset. From the total sample, 25 patients were enrolled in the childhood-onset group (0–11 years), 19 patients in the adolescence/youth-onset group (12–21 years), and 119 patients in the adult-onset group (>21 years). Blood pressure, anthropometric and biochemical characteristics were obtained, and the MC4R coding region of each subject’s DNA was assessed using automated Sanger sequencing.ResultsSignificant anthropometric differences between the groups were observed. Higher body weight and BMI medians were found in patients with childhood-onset or adolescence/youth-onset when compared to the adulthood-onset obesity group. A total of five mutations were identified, including four missense variants: p.Ser36Thr, p.Val103Ile, p.Ala175Thr, and p.Ile251Leu. Additionally, we observed one synonymous variant (p.Ile198=). The p.Ala175Thr variant was identified in a female case with severe obesity and adulthood-onset. This variant was previously described as a partial loss-of-function mutation, in which the minor allele poses dominant-negative effect, probably resulting in reduced cAMP activity.ConclusionThis study showed a prevalence of common and rare variants in a cohort of Brazilian adults with severe obesity and candidates to bariatric surgery. We have identified a rare potentially pathogenic MC4R variant in a Brazilian patient with severe and adulthood-onset obesity.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 967
Author(s):  
Mohamed H. Al-Hamed ◽  
Nada Alsahan ◽  
Maha Tulbah ◽  
Wesam Kurdi ◽  
Wafa’a I. Ali ◽  
...  

Background: Intellectual developmental disorder with cardiac defects and dysmorphic facies (IDDCDF, MIM 618316) is a newly described disorder. It is characterized by global developmental delay, intellectual disability and speech delay, congenital cardiac malformations, and dysmorphic facial features. Biallelic pathogenic variants of TMEM94 are associated with IDDCDF. Methods and Results: In a prenatal setting, where fetal abnormalities were detected using antenatal sonography, we used trio-exome sequencing (trio-ES) in conjunction with chromosomal microarray analysis (CMA) to identify two novel homozygous loss of function variants in the TMEM94 gene (c.606dupG and c.2729-2A>G) in two unrelated Saudi Arabian families. Conclusions: This study provides confirmation that TMEM94 variants may cause IDDCDF. For the first time we describe the pathogenicity of TMEM94 defects detected during the prenatal period.


2011 ◽  
Vol 149 (4) ◽  
pp. 529-538 ◽  
Author(s):  
N. L. FEELEY ◽  
S. BOTTOMLEY ◽  
K. A. MUNYARD

SUMMARYThe coding region of the alpaca Agouti signalling protein (ASIP) gene was sequenced. It was determined to be 402 nucleotides long and code for a protein that is 133 amino acids long. Eight mutations were identified in a sample of 15 alpaca, five in the coding region and three in the introns flanking the exons. In silico analysis showed that three of the five mutations in the coding sequence, c.325_381del57, c.292C>T and c.353G>A are probable loss-of-function mutations. The three mutations were strongly associated with black fibre colour, with 0·90 of black alpacas in the current study having two copies of one or another of the mutations. However, not all black animals displayed the putative ‘aa’ genotype, and almost half of the non-black animals did display that genotype. Contributing factors such as regulatory region mutations, interactions of ASIP with melanocortin-1 receptor (MC1R) and α-melanocyte stimulating hormone (α-MSH), the effect of dilution genes and subjective phenotype assignment are discussed. These mutations will allow alpaca breeders to select for or against black, but they do not explain all black phenotypes in this species.


2008 ◽  
Vol 21 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Yuling Bai ◽  
Stefano Pavan ◽  
Zheng Zheng ◽  
Nana F. Zappel ◽  
Anja Reinstädler ◽  
...  

The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2–mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.


2018 ◽  
Author(s):  
Sharissa L. Latham ◽  
Nadja Ehmke ◽  
Patrick Y.A. Reinke ◽  
Manuel H. Taft ◽  
Michael J. Lyons ◽  
...  

Introductory paragraphUntil recently missense germ-line mutations inACTB, encoding the ubiquitously expressed β-cytoplasmic actin (CYA), were exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF), a complex developmental disorder1,2. Here, we report six patients with previously undescribed heterozygous variants clustered in the 3’-coding region ofACTB. These patients present with clinical features different from BWCFF, including thrombocytopenia, microcephaly, and mild developmental disability. Patient derived cells are morphologically and functionally distinct from controls. Assessment of cytoskeletal constituents identified a discrete filament population altered in these cells, which comprises force generating and transmitting actin binding proteins (ABP) known to be associated with thrombocytopenia3–8.In silicomodelling and molecular dynamics (MD)-simulations support altered interactions between these ABP and mutant β-CYA. Our results describe a new clinical syndrome associated withACTBmutations with a distinct genotype-phenotype correlation, identify a cytoskeletal protein interaction network crucial for thrombopoiesis, and provide support for the hypomorphic nature of these actinopathy mutations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xavier Solanich ◽  
Gardenia Vargas-Parra ◽  
Caspar I. van der Made ◽  
Annet Simons ◽  
Janneke Schuurs-Hoeijmakers ◽  
...  

IntroductionLoss-of-function TLR7 variants have been recently reported in a small number of males to underlie strong predisposition to severe COVID-19. We aimed to determine the presence of these rare variants in young men with severe COVID-19.MethodsWe prospectively studied males between 18 and 50 years-old without predisposing comorbidities that required at least high-flow nasal oxygen to treat COVID-19. The coding region of TLR7 was sequenced to assess the presence of potentially deleterious variants.ResultsTLR7 missense variants were identified in two out of 14 patients (14.3%). Overall, the median age was 38 (IQR 30-45) years. Both variants were not previously reported in population control databases and were predicted to be damaging by in silico predictors. In a 30-year-old patient a maternally inherited variant [c.644A>G; p.(Asn215Ser)] was identified, co-segregating in his 27-year-old brother who also contracted severe COVID-19. A second variant [c.2797T>C; p.(Trp933Arg)] was found in a 28-year-old patient, co-segregating in his 24-year-old brother who developed mild COVID-19. Functional testing of this variant revealed decreased type I and II interferon responses in peripheral mononuclear blood cells upon stimulation with the TLR7 agonist imiquimod, confirming a loss-of-function effect.ConclusionsThis study supports a rationale for the genetic screening for TLR7 variants in young men with severe COVID-19 in the absence of other relevant risk factors. A diagnosis of TLR7 deficiency could not only inform on treatment options for the patient, but also enables pre-symptomatic testing of at-risk male relatives with the possibility of instituting early preventive and therapeutic interventions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadja T. Hofer ◽  
Petronel Tuluc ◽  
Nadine J. Ortner ◽  
Yuliia V. Nikonishyna ◽  
Monica L. Fernándes-Quintero ◽  
...  

Abstract Background There is increasing evidence that de novo CACNA1D missense mutations inducing increased Cav1.3 L-type Ca2+-channel-function confer a high risk for neurodevelopmental disorders (autism spectrum disorder with and without neurological and endocrine symptoms). Electrophysiological studies demonstrating the presence or absence of typical gain-of-function gating changes could therefore serve as a tool to distinguish likely disease-causing from non-pathogenic de novo CACNA1D variants in affected individuals. We tested this hypothesis for mutation S652L, which has previously been reported in twins with a severe neurodevelopmental disorder in the Deciphering Developmental Disorder Study, but has not been classified as a novel disease mutation. Methods For functional characterization, wild-type and mutant Cav1.3 channel complexes were expressed in tsA-201 cells and tested for typical gain-of-function gating changes using the whole-cell patch-clamp technique. Results Mutation S652L significantly shifted the voltage-dependence of activation and steady-state inactivation to more negative potentials (~ 13–17 mV) and increased window currents at subthreshold voltages. Moreover, it slowed tail currents and increased Ca2+-levels during action potential-like stimulations, characteristic for gain-of-function changes. To provide evidence that only gain-of-function variants confer high disease risk, we also studied missense variant S652W reported in apparently healthy individuals. S652W shifted activation and inactivation to more positive voltages, compatible with a loss-of-function phenotype. Mutation S652L increased the sensitivity of Cav1.3 for inhibition by the dihydropyridine L-type Ca2+-channel blocker isradipine by 3–4-fold. Conclusions and limitations Our data provide evidence that gain-of-function CACNA1D mutations, such as S652L, but not loss-of-function mutations, such as S652W, cause high risk for neurodevelopmental disorders including autism. This adds CACNA1D to the list of novel disease genes identified in the Deciphering Developmental Disorder Study. Although our study does not provide insight into the cellular mechanisms of pathological Cav1.3 signaling in neurons, we provide a unifying mechanism of gain-of-function CACNA1D mutations as a predictor for disease risk, which may allow the establishment of a more reliable diagnosis of affected individuals. Moreover, the increased sensitivity of S652L to isradipine encourages a therapeutic trial in the two affected individuals. This can address the important question to which extent symptoms are responsive to therapy with Ca2+-channel blockers.


Sign in / Sign up

Export Citation Format

Share Document