scholarly journals 673: Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) antibody prevents inflammation-induced preterm birth and effects on cervix remodeling using a mouse model

2018 ◽  
Vol 218 (1) ◽  
pp. S404-S405
Author(s):  
Christopher Nold ◽  
Kathleen O'Hara ◽  
Julie Stone ◽  
Vanessa Blanchard ◽  
Steven Yellon ◽  
...  
2008 ◽  
Vol 68 (5) ◽  
pp. 721-728 ◽  
Author(s):  
C Plater-Zyberk ◽  
L A B Joosten ◽  
M M A Helsen ◽  
M I Koenders ◽  
P A Baeuerle ◽  
...  

Objective:A pathogenic role for granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)17 in rheumatoid arthritis (RA) has been suggested. In previously published work, the therapeutic potentials of GM-CSF and IL17 blockade in arthritis have been described. In the present study, the simultaneous blockade of both pathways in a mouse model for chronic arthritis was investigated to identify whether this double blockade provides a superior therapeutic efficacy.Methods:A chronic relapsing arthritis was induced in C57Bl/6 wild type (WT) and C57Bl/6 genetically deficient for IL17 receptor (IL17R knockout (KO)) mice by intra-articular injection of Streptococcal cell wall (SCW) fragments into knees on days 0, 7, 14 and 21. Treatments (intraperitoneal) were given weekly starting on day 14. Animals were analysed for inflammation, joint damage and a range of inflammatory mediators.Results:Joint swelling and cartilage damage were significantly reduced in the IL17R KO mice and in WT mice receiving anti-GM-CSF neutralising mAb 22E9 compared to isotype control antibodies. The therapeutic effect was significantly more pronounced in mice where IL17 and GM-CSF pathways were inhibited (eg, IL17R KO mice treated with 22E9 mAb). Tumour necrosis factor (TNF)α blockade had essentially no effect.Conclusion:Our data further support the therapeutic potentials of GM-CSF and IL17 blockade in a RA model that is no longer responsive to an established TNFα antagonist, moreover, our results suggest that concomitant inhibition of both pathways may provide the basis for a highly effective treatment of chronic RA in patients that are resistant to treatment by TNFα inhibitors.


2018 ◽  
Vol 26 (4) ◽  
pp. 551-559 ◽  
Author(s):  
Christopher Nold ◽  
Julie Stone ◽  
Kathleen O’Hara ◽  
Patricia Davis ◽  
Vladislav Kiveliyk ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Fook-Choe Cheah ◽  
Pietro Presicce ◽  
Tian-Lee Tan ◽  
Brenna C. Carey ◽  
Suhas G. Kallapur

Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pro-inflammatory cytokine that is increased in the amniotic fluid in chorioamnionitis and elevated in the fetal lung with endotoxin exposure. Although GM-CSF has a pivotal role in fetal lung development, it stimulates pulmonary macrophages and is associated with the development of bronchopulmonary dysplasia (BPD). How antenatal GM-CSF results in recruitment of lung macrophage leading to BPD needs further elucidation. Hence, we used a transgenic and knock-out mouse model to study the effects of GM-CSF focusing on the fetal lung macrophage.Methods: Using bitransgenic (BTg) mice that conditionally over-expressed pulmonary GM-CSF after doxycycline treatment, and GM-CSF knock-out (KO) mice with no GM-CSF expression, we compared the ontogeny and immunophenotype of lung macrophages in BTg, KO and control mice at various prenatal and postnatal time points using flow cytometry and immunohistology.Results: During fetal life, compared to controls, BTg mice over-expressing pulmonary GM-CSF had increased numbers of lung macrophages that were CD68+ and these were primarily located in the interstitium rather than alveolar spaces. The lung macrophages that accumulated were predominantly CD11b+F4/80+ indicating immature macrophages. Conversely, lung macrophages although markedly reduced, were still present in GM-CSF KO mice.Conclusion: Increased exposure to GM-CSF antenatally, resulted in accumulation of immature macrophages in the fetal lung interstitium. Absence of GM-CSF did not abrogate but delayed the transitioning of interstitial macrophages. Together, these results suggest that other perinatal factors may be involved in modulating the maturation of alveolar macrophages in the developing fetal lung.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jani Lappalainen ◽  
Nicolas Yeung ◽  
Su D. Nguyen ◽  
Matti Jauhiainen ◽  
Petri T. Kovanen ◽  
...  

AbstractIn atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte–macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


Neonatology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Verena Schulte ◽  
Alexandra Sipol ◽  
Stefan Burdach ◽  
Esther Rieger-Fackeldey

<b><i>Background:</i></b> The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. β<sub>C</sub> is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. β<sub>IT</sub> is a physiological, truncated isoform of β<sub>C</sub> and is known to act as physiological inhibitor of β<sub>C</sub>. <b><i>Objective:</i></b> The aim of this study was to determine the ratio of β<sub>IT</sub> and β<sub>C</sub> in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. <b><i>Methods:</i></b> We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). β<sub>IT</sub> and β<sub>C</sub> expression were determined in peripheral blood cells by real-time PCR. β<sub>IT</sub> expression, defined as the ratio of β<sub>IT</sub> and β<sub>C</sub>, was correlated with the respiratory score. <b><i>Results:</i></b> β<sub>IT</sub> expression was found in all 59 recruited newborns with a trend toward higher β<sub>IT</sub> in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; <i>p</i> = 0.066). Seriously ill newborns (score 3) had significantly higher β<sub>IT</sub> than healthy newborns ([score 0], <i>p</i> = 0.010). Healthy preterm infants had significantly higher β<sub>IT</sub> expression than healthy term infants (<i>p</i> = 0.019). <b><i>Conclusions:</i></b> β<sub>IT</sub> is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that β<sub>IT</sub> may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of β<sub>C</sub> and, therefore, maintaining surfactant in respiratory ill newborns.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
T Gesner ◽  
RA Mufson ◽  
KJ Turner ◽  
SC Clark

Abstract Granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) each bind specifically to a small number of high- affinity receptors present on the surface of the cells of the acute myelogenous leukemia line, KG-1. Through chemical cross-linking of IL-3 and GM-CSF to KG-1 cells, we identified distinct binding proteins for each of these cytokines with approximate molecular masses of 69 and 93 Kd, respectively. Although these two binding proteins are distinct, GM- CSF and IL-3 compete with each other for binding to KG-1 cells. Other cell lines, which express receptors for either factor but not for both do not display this cross-competition for binding with IL-3 and GM-CSF. These findings imply that distinct IL-3 and GM-CSF binding proteins are expressed on the cell surface and that an association exists between these proteins on KG-1 cells.


Sign in / Sign up

Export Citation Format

Share Document