lung macrophage
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Steven Tiwen Chen ◽  
Matthew D Park ◽  
Diane Marie Del Valle ◽  
Mark Buckup ◽  
Alexandra Tabachnikova ◽  
...  

Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, very little progress has been made to identify curative therapies to treat COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and death to develop tailored immunotherapy strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) presentation and effector T cell signature, while severe disease and death were associated with an altered Ag presentation signature, increased numbers of circulating inflammatory, immature myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages (AM) were not only severely depleted, but also had an altered Ag presentation signature, and were replaced by inflammatory monocytes and monocyte-derived macrophages (MoMϕ). Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality were restored in patients that recovered. These data therefore suggest that local and systemic myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung inflammatory illnesses.


Author(s):  
Calum C. Bain ◽  
Andrew S. MacDonald

AbstractThe last decade has been somewhat of a renaissance period for the field of macrophage biology. This renewed interest, combined with the advent of new technologies and development of novel model systems to assess different facets of macrophage biology, has led to major advances in our understanding of the diverse roles macrophages play in health, inflammation, infection and repair, and the dominance of tissue environments in influencing all of these areas. Here, we discuss recent developments in our understanding of lung macrophage heterogeneity, ontogeny, metabolism and function in the context of health and disease, and highlight core conceptual advances and key unanswered questions that we believe should be focus of work in the coming years.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1939
Author(s):  
James M. Baker ◽  
Molly Hammond ◽  
Josiah Dungwa ◽  
Rajesh Shah ◽  
Angeles Montero-Fernandez ◽  
...  

Lung macrophage iron levels are increased in COPD patients. Lung macrophage iron levels are thought to be increased by cigarette smoke, but the role of red blood cells (RBCs) as a source of iron has not been investigated. We investigate RBCs as a potential source of alveolar iron in COPD, and determine the effect of RBC-derived iron on macrophage function. We used lung tissue sections to assess RBC coverage of the alveolar space, iron and ferritin levels in 11 non-smokers (NS), 15 smokers (S) and 32 COPD patients. Lung macrophages were isolated from lung resections (n = 68) and treated with hemin or ferric ammonium citrate (50, 100 or 200 μM). Lung macrophage phenotype marker gene expression was measured by qPCR. The phagocytosis of Non-typeable Haemophilus influenzae (NTHi) was measured by flow cytometry. Cytokine production in response to NTHi in iron-treated macrophages was measured by ELISA. Lung macrophage iron levels were significantly correlated with RBC coverage of the alveolar space (r = 0.31, p = 0.02). Furthermore, RBC coverage and lung macrophage iron were significantly increased in COPD patients and correlated with airflow obstruction. Hemin treatment downregulated CD36, CD163, HLA-DR, CD38, TLR4, CD14 and MARCO gene expression. Hemin-treated macrophages also impaired production of pro-inflammatory cytokines in response to NTHi exposure, and decreased phagocytosis of NTHi (200 μM: 35% decrease; p = 0.03). RBCs are a plausible source of pulmonary iron overload in COPD. RBC-derived iron dysregulates macrophage phenotype and function.


Author(s):  
Ivy Yeuk Wah Chung ◽  
Lei Li ◽  
Miroslaw Cygler

Legionella pneumophila is a human pathogen that causes Legionnaires' disease, a severe form of pneumonia. It can be found in various aquatic environments ranging from cooling towers to ponds. In addition to causing disease in humans, it can also infect free-living amoebae commonly found in various aquatic environments. Once inside a human lung macrophage, it creates a niche called the Legionella-containing vacuole where it can evade phagolysosomal degradation and replicate. During infection, normal cellular functions are hijacked by proteins that are secreted by the pathogen, called bacterial effectors. Here, the structural characterization of the effector LegA15/AnkD is reported. The protein contains an ankyrin-repeat domain followed by a cysteine protease-like (CPL) domain with a putative catalytic triad consisting of His268–Asn290–Cys361. The CPL domain shows similarity to the CE clan in the MEROPS database, which contains ubiquitin-like hydrolases. The C-terminal segment of LegA15, including the CPL domain, shows structural similarity to another effector, LegA3/AnkH, while they share only 12% sequence identity. When expressed in mammalian cells, LegA15 is localized within the cytoplasm, in contrast to LegA3, which localizes to the nucleus.


Author(s):  
Preeti Maharjan ◽  
Joseph Crea ◽  
Michael Tkaczuk ◽  
Sharyn Gaskin ◽  
Dino Pisaniello

Inhalational exposure to dust from engineered stone (ES), also known as artificial or composite stone, is associated with a specific disease profile, namely accelerated silicosis, and scleroderma. The pathogenic mechanisms are poorly understood, particularly the role of resin and metal ions. Metal ions are present in pigments and constituent minerals and may be considered potential contributors to toxicity. The aim of this preliminary study was to understand the solubility of ES-containing metals in artificial lysosomal fluid (ALF) simulating the acidic intracellular environment of the lung macrophage lysosome. Differences with respect to ES types and temporal release were explored. Ten ES products of variable colour and company origin were comminuted and assessed for four different metals, solubilized into ALF solutions at 1,2,4 and 8 weeks at 37 °C. There was significant variability in metal release, particularly with regard to iron and manganese, which could be correlated with the reflected brightness of the stone. A majority of the available Mn, Fe, Al and Ti was solubilized. Time trends for metal release varied with ES type but also with metal ion. The data suggest a high metal ion bioavailability once engulfed by lung macrophages. There is a need to investigate a wider range of ES dust and relate metal content to markers of ES toxicity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fook-Choe Cheah ◽  
Pietro Presicce ◽  
Tian-Lee Tan ◽  
Brenna C. Carey ◽  
Suhas G. Kallapur

Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pro-inflammatory cytokine that is increased in the amniotic fluid in chorioamnionitis and elevated in the fetal lung with endotoxin exposure. Although GM-CSF has a pivotal role in fetal lung development, it stimulates pulmonary macrophages and is associated with the development of bronchopulmonary dysplasia (BPD). How antenatal GM-CSF results in recruitment of lung macrophage leading to BPD needs further elucidation. Hence, we used a transgenic and knock-out mouse model to study the effects of GM-CSF focusing on the fetal lung macrophage.Methods: Using bitransgenic (BTg) mice that conditionally over-expressed pulmonary GM-CSF after doxycycline treatment, and GM-CSF knock-out (KO) mice with no GM-CSF expression, we compared the ontogeny and immunophenotype of lung macrophages in BTg, KO and control mice at various prenatal and postnatal time points using flow cytometry and immunohistology.Results: During fetal life, compared to controls, BTg mice over-expressing pulmonary GM-CSF had increased numbers of lung macrophages that were CD68+ and these were primarily located in the interstitium rather than alveolar spaces. The lung macrophages that accumulated were predominantly CD11b+F4/80+ indicating immature macrophages. Conversely, lung macrophages although markedly reduced, were still present in GM-CSF KO mice.Conclusion: Increased exposure to GM-CSF antenatally, resulted in accumulation of immature macrophages in the fetal lung interstitium. Absence of GM-CSF did not abrogate but delayed the transitioning of interstitial macrophages. Together, these results suggest that other perinatal factors may be involved in modulating the maturation of alveolar macrophages in the developing fetal lung.


Immunity ◽  
2020 ◽  
Author(s):  
Elza Evren ◽  
Emma Ringqvist ◽  
Kumar Parijat Tripathi ◽  
Natalie Sleiers ◽  
Inés Có Rives ◽  
...  

2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Ruiqi Jia ◽  
Kuili Cui ◽  
Zhenkui Li ◽  
Yuan Gao ◽  
Bianfang Zhang ◽  
...  

Abstract Background Pseudomonas aeruginosa (PA) is one of the most common bacteria that causes lung infection in hospital. The aim of our study is to explore the role and action mechanism of NK cells in lung PA infection. Methods In this present study, 2.5 × 108 CFU/mouse PA was injected into murine trachea to make lung PA infection mouse model. Anti-asialo GM1 was used to inhibit NK cell. The percentage of NK cells was ensured by flow cytometry, and the M1- and M2-polarized macrophages were determined by flow cytometry, qRT-PCR, and ELISA assay. Besides, H&E staining was performed to ensure the pathological changes in lung tissues. Transmission electron microscopy and western blot were carried out to identify the exosome. Results Here, in the mouse model of PA lung infection, NK cell depletion caused M2 polarization of lung macrophage, and exacerbated PA-induced lung injury. Next, our data shown that M2 macrophage polarization was enhanced when the generation of NK cell-derived exosome was blocked in the co-culture system of NK cells and macrophages. Subsequently, we demonstrated that NK cells promoted M1 macrophage polarization both in PA-infected macrophage and the mouse model of PA lung infection, and attenuated lung injury through exosome. Conclusion Overall, our data proved that NK cell may improve PA-induced lung injury through promoting M1 lung macrophage polarization by secreting exosome. Our results provide a new idea for the treatment of PA lung infection.


Sign in / Sign up

Export Citation Format

Share Document