Treatment of fishery wastewater by co-culture of Thalassiosira pseudonana with Isochrysis galbana and evaluation of their active components

2021 ◽  
Vol 60 ◽  
pp. 102498
Author(s):  
Haixia Wang ◽  
Mei Qi ◽  
Yahui Bo ◽  
Chengxu Zhou ◽  
Xiaojun Yan ◽  
...  
2009 ◽  
Vol 39 (6) ◽  
pp. 1760-1767 ◽  
Author(s):  
Silvana Ohse ◽  
Roberto Bianchini Derner ◽  
Renata Ávila Ozório ◽  
Maurício Villela Da Costa Braga ◽  
Paulo Cunha ◽  
...  

O aumento da emissão de CO2 e de outros gases efeito estufa tem gerado debates em nível mundial sobre alterações climáticas e estimulado o desenvolvimento de estratégias mitigadoras. Trabalhos nessa área incluem sequestro de CO2 por meio da produção de microalgas aquáticas. Por essa razão, desenvolveu-se um estudo visando determinar os teores de carbono, hidrogênio, nitrogênio e proteína e a produção de biomassa seca de nove espécies de microalgas marinhas (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii Chaetoceros muelleri, Thalassiosira fluviatilis e Isochrysis sp.) e uma de água doce (Chlorella vulgaris), em cultivo autotrófico estacionário com objetivo de identificar as mais produtivas e com maior capacidade de fixação de carbono. O experimento foi desenvolvido em sala de cultivo, na Universidade Federal de Santa Catarina, com iluminação contínua e radiação em torno de 150µmol m-2 s-1, temperatura de 25±2°C, suplementação de ar constante, sendo utilizados erlenmeyers com 800mL de meio de cultura. O delineamento experimental foi de blocos casualizados no tempo com três repetições. As espécies C. vulgaris e T. suecica são menos produtivas. Quando se visa à suplementação alimentar, as espécies C. vulgaris e T. Chuii são consideradas interessantes, uma vez que apresentam altos teores de C, N, H e proteína. As espécies N. Oculata, T. pseudonana e C. vulgaris apresentam altos teores de C, demonstrando alta capacidade de fixação de carbono.


2021 ◽  
Vol 1 (1) ◽  
pp. 26-38
Author(s):  
Thao Duc Mai ◽  
Kim Jye Lee-Chang ◽  
Ian D. Jameson ◽  
Tung Hoang ◽  
Ngoc Bao Anh Cai ◽  
...  

The importance of microalgal lipids for the survival and growth of shrimp postlarvae has been recognized in a range of studies. Microalgae with fast growth rates and high levels of polyunsaturated fatty acids (PUFA) are considered vital to maximise production and minimise cost in shrimp larviculture. The lipid content and fatty acid composition of microalgae used in shrimp production varies substantially between the algal classes and species being used in Vietnam. This study aims to characterise microalgal lipid and fatty acid (FA) profiles and evaluate the most promising species under growth conditions that are most suitable for shrimp aquaculture. Here, we report that the highest lipid contents were obtained in the Haptophyta microalgae, Tisochrysis lutea and Isochrysis galbana, at 90.3 and 61.1 mg/g, respectively. In contrast, two of the most popular diatom species being used for shrimp larval cultivation in Vietnam, Thalassiosira pseudonana and T. weissflogii, displayed the lowest lipid contents at 16.1 mg/g. Other microalgal species examined showed lipid contents ranging from 28.6 to 55 mg/g. Eicosapentaenoic acid (EPA, 20:5ω3) ranged from 0.6 to 29.9% across the species, with docosahexaenoic acid (DHA, 22:6ω3) present at 0.01 to 11.1%; the two omega (ω)–3 long-chain (LC, ≥C20) LC-PUFA varied between the microalgae groups. Polar lipids were the main lipid class, ranging from 87.2 to 97.3% of total lipids, and triacylglycerol was detected in the range of 0.01 to 2.5%. Saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) increased and PUFA decreased with increasing growth temperatures. This study demonstrated the differences in the lipid contents and FA profiles across 10 microalgal species and the effect of the higher temperature growing conditions encountered in Vietnam.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
HC Huang ◽  
CL Chao ◽  
SY Hwang ◽  
TC Chang ◽  
CH Chao ◽  
...  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 51-58
Author(s):  
ANTTI HAAPALA ◽  
MIKA KÖRKKÖ ◽  
ELISA KOIVURANTA ◽  
JOUKO NIINIMÄKI

Analysis methods developed specifically to determine the presence of ink and other optically active components in paper machine white waters or other process effluents are not available. It is generally more interest¬ing to quantify the effect of circulation water contaminants on end products. This study compares optical techniques to quantify the dirt in process water by two methods for test media preparation and measurement: direct process water filtration on a membrane foil and low-grammage sheet formation. The results show that ink content values obtained from various analyses cannot be directly compared because of fundamental issues involving test media preparation and the varied methodologies used to formulate the results, which may be based on different sets of assumptions. The use of brightness, luminosity, and reflectance and the role of scattering measurements as a part of ink content analysis are discussed, along with fine materials retention and measurement media selection. The study concludes with practical tips for case-dependent measurement methodology selection.


2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


2016 ◽  
Vol 9 (1) ◽  
pp. 64-72
Author(s):  
Fauziati Fauziati ◽  
Eldha Sampepana

Palm shell liquid smoke obtained by pyrolysis and redestilasi still produce a pungent smoke flavor and color of yellow to brownish yellow so that the necessary research purification of smoke that can be used as ingredients other than preservatives, such as antiseptic hand wash. The research objective is to reduce the stinging liquid smoke aroma, color is tawny and to identify the characterization of the active components of liquid smoke shell oil refining results in Gas Chromatography Mass Spectrometry (GC-MS). The purification process of liquid smoke with redistilled at a temperature of 2000C and by adding 4.5% zeolite adsorbent made three (3) times the resulting liquid smoke of distillate and residue. Liquid smoke produced from distillate and residue are added activated charcoal as much as 9%, 10.5% and 12%, then stirred with a shaker subsequently allowed to stand for 6 days and 10 days The results of the study showed that liquid smoke purification results of the residue by the addition of activated charcoal as 12% and the time saved for 10 days (A2B2C3) gives flavor and color by 1.94 of 1.84 is odorless, yellowish white color and clarity. While the characteristics of the active components of purification results are predominantly acetic acid and phenol compounds of residues that serve as preservatives, antibacterial and antioxidant compounds while PAH (Polycyclic Aromatic Hydrocarbon), namely tar, benzoperen, gualakol and siringoll (aroma causes) undetectedABSTRAKAsap cair cangkang sawit yang diperoleh melalui proses pirolisis dan redestilasi masih menghasilkan aroma asap menyengat dan warna kuning hingga kuning kecoklatan sehingga diperlukan penelitian pemurnian asap yang dapat digunakan sebagai bahan lain selain pengawet, seperti antiseptik pencuci tangan. Tujuan penelitian adalah  untuk mengurangi aroma asap cair yang menyengat, warna yang masih kuning kecoklatan dan untuk  mengidentifikasi karakterisasi komponen aktif asap cair cangkang sawit hasil pemurnian secara Kromatografi Gas Spektrometri Massa (GC-MS). Proses  pemurnian asap cair dengan  redistilasi pada suhu 2000C dan dengan menambahkan adsorben zeolit 4,5% yang dilakukan sebanyak 3 (tiga) kali  dihasilkan asap cair dari Destilat dan Residu . Asap cair  yang dihasilkan dari destilat dan residu ditambahkan arang aktif sebanyak 9%,10,5% dan 12%  kemudian diaduk dengan shaker selanjutnya didiamkan selama 6 hari dan 10 hari .Hasil penelitian menunjukkan bahwa asap cair hasil pemurnian dari residu dengan penambahan arang aktif sebanyak 12% dan waktu simpan selama 10 hari ( A2B2C3 ) memberikan aroma sebesar 1,94 dan warna sebesar 1,84 adalah tidak berbau ,  warna putih kekuningan dan jernih . Sedangkan  karakteristik  komponen aktif hasil pemurnian yang paling dominan  adalah  senyawa acetic acid dan phenol  dari residu yang berfungsi sebagai bahan pengawet, antibakteri dan antioksidan sedangkan senyawa PAH (Polycyclic Aromatic Hydrocarbon) yaitu tar, benzoperen,  gualakol  dan siringoll ( penyebab aroma ) tidak terdeteksi . Kata kunci : asap cair, cangkang sawit, komponen aktif, pemurnian, redestilasi 


Sign in / Sign up

Export Citation Format

Share Document