scholarly journals 24P Using real-world evidence data and machine learning to identify molecular biomarkers for patient response to immune checkpoint inhibitors in metastatic melanoma

2021 ◽  
Vol 32 ◽  
pp. S1383
Author(s):  
V. Siozopoulou ◽  
A. Khmelevskiy ◽  
A. Rodlauer-Kriegl ◽  
T. de Caluwe ◽  
A. Churov ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1489 ◽  
Author(s):  
Bol ◽  
Ellebaek ◽  
Hoejberg ◽  
Bagger ◽  
Larsen ◽  
...  

Uveal melanoma (UM) is the most common intraocular malignancy in adults and shows a high rate of metastatic spread. As randomized clinical trials with immune checkpoint inhibitors (ICI) have not been performed in patients with metastatic UM, we analyzed the real-world outcomes in a nationwide population-based study. Clinical data of patients with UM were extracted from the Danish Metastatic Melanoma database, a nationwide database containing unselected records of patients diagnosed with metastatic melanoma in Denmark. Survival before (pre-ICI, n = 32) and after (post-ICI, n = 94) the approval of first-line treatment with ICI was analyzed. A partial response to first-line treatment was observed in 7% of patients treated with anti-programmed cell death protein (PD)-1 monotherapy and in 21% with combined anti-cytotoxic T lymphocyte antigen (CTLA)-4 plus anti-PD-1 therapy. Median progression-free survival was 2.5 months for patients treated in the pre-ICI era compared to 3.5 months in the post-ICI era (hazard ratio (HR) 0.43; 95% confidence interval (CI) 0.28–0.67; p < 0.001). The estimated one-year overall survival rate increased from 25.0% to 41.9% and the median overall survival improved from 7.8 months to 10.0 months, respectively (HR 0.52; 95% CI 0.34–0.79; p = 0.003). Thus, the introduction of ICI as first-line treatment appears to have significantly improved the real-world survival of patients with metastatic UM, despite relatively low response rates compared to cutaneous melanoma. With the lack of therapies proven effective in randomized trials, these data support the current treatment with ICI in patients with metastatic UM.


2021 ◽  
Author(s):  
Vanita Noronha ◽  
George Abraham ◽  
Vijay Patil ◽  
Amit Joshi ◽  
Nandini Menon ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A310-A310
Author(s):  
Krishna Gunturu ◽  
Muhammad Awidi ◽  
Rojer Ranjit ◽  
Brendan Connell ◽  
Rachel Carrasquillo ◽  
...  

BackgroundICI revolutionized modern Oncology landscape and being utilized in metastatic to adjuvant and neo-adjuvant settings. As Oncologists, we are treating cancer patients with ICI every day, yet there is still a lot that is unknown about these drugs. We don’t have clear understanding of the efficacy and toxicity when sequencing one ICI for another. We conducted a retrospective review of real world data at Lahey Hospital and Medical Center to understand further and to pave path for prospective studies to understand this issue further to improve patient care.MethodsWe retrospectively reviewed Oncology patient charts who received ICI between January1, 2014 to December 18, 2018. Total 483 patients received ICI during this time frame and 22 of these patients received a second ICI either as monotherapy or in combination with other ICI or chemotherapy.ResultsA total of 22 patients received subsequent ICI after the initial ICI as showed in table 1. 15 of the 22 (68%) patients were transitioned from one ICI to another monotherapy. 11 of these patients were transitioned secondary to disease progression (73%), three had immune related adverse events and one was switched per standard of care. One patient had ICI re-challenge. Three patients had a transition from ICI monotherapy to combination ICI therapy. One patient went onto chemo-immunotherapy and 2 patients transitioned from combination ICI to chemo-immunotherapy.Abstract 284 Table 1Real world data of sequencing immune checkpoint inhibitors (ICI) after initial ICIConclusionsICI therapy is evolving and patients are being treated with multiple lines of ICI. In current practices, ICI is frequently being transitioned from cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1) classes or combined with chemotherapy or targeted therapy. It would be prudent to explore the effects of sequencing these medications either as a monotherapy or in combination with other therapies to better serve our patients and to prevent financial toxicity.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A249-A249
Author(s):  
Daniel Delitto ◽  
Evan Lipson ◽  
Laura Cappelli ◽  
Klaus Busam ◽  
Antony Rosen ◽  
...  

BackgroundTumor-specific antibodies have been reported in patients with cancers responding to immune checkpoint inhibitors (ICI), and there is an increasing appreciation for the potential role of B cells in mediating ICI responses. However, the humoral immune response to melanoma remains incompletely defined. We hypothesized that screening sera for antibodies by immunoprecipitation with lysates of cultured melanoma cells would increase the likelihood of detecting circulating antibodies in melanoma patients receiving ICI, and potentially identify novel antibody targets associated with treatment response and/or immune-related adverse events (IRAEs).MethodsPre-and on/post-treatment sera or plasma from 12 clinically-annotated patients with advanced metastatic melanoma receiving ICI were assayed for tumor-specific antibodies with an established immunoprecipitation platform. 35S-methionine-labeled lysates from cultured 624Mel cells were used for immunoprecipitation. 624Mel expresses several shared non-mutated melanoma antigens (e.g., MAGEA3, tyrosinase, MART-1/Melan-A, gp75, and gp100). Antigen identity was determined using on-bead digests followed by mass spectrometry, and was confirmed by immunoprecipitation with in vitro transcription/translation (IVTT) products.ResultsAntibodies reactive against 624Mel proteins were detected in 4 of 12 (33%) patients (table 1). Mass spectrometric sequencing performed on proteins captured with sera from 3 of 4 patients identified several putative antigens. Immunoprecipitation with IVTT candidate proteins confirmed antibodies against melanoma-associated and cancer testis antigens NY-ESO-1, SSX2 and MAGEA10. Antibodies were observed in 1 of 1 (100%) patient with a complete response, 2 of 4 (50%) with a partial response, 1 of 1 (100%) with stable disease, and 0 of 6 (0%) with progressive disease. Antibody levels varied over the course of therapy, with previously undetectable specificities arising during treatment response in patients #1–3. Patient #1 with a complete tumor regression developed antibodies to SSX2 and MAGEA10 that were absent before treatment. Further, detection of these antibodies coincided with diagnosis of IRAEs (anti-SSX2 with pancreatitis and anti-MAGEA10 with dermatitis). In contrast, patient #3, initially with a partial tumor regression, demonstrated a loss of detectable anti-NY-ESO-1 antibodies upon disease progression, and subsequent metastasectomy demonstrated loss of NY-ESO-1 protein expression in the progressing tumor. Testing sera from all 12 patients with IVTT products for NY-ESO-1, SSX2 and MAGEA10 did not reveal additional humoral responses.Abstract 231 Table 1Antibodies detected in the serum or plasma of patients with metastatic melanoma treated with ICI therapy. Treatment response indicates best overall response according to RECIST v1.1. Post-treatment blood collections were drawn during or after ICI therapy.ConclusionsOur comprehensive screening platform detected circulating antibodies specific to multiple melanoma-associated and cancer testis antigens in patients deriving clinical benefit from ICI. Expanded investigations of the evolution of antibody production over the course of ICI therapy, associated with tumor response to treatment and development of IRAEs, are warranted.AcknowledgementsThis study was supported by the Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, and NIH P30-AR070254.Ethics ApprovalThis study was approved by the Johns Hopkins Institutional Review Board, approval #NA_00090257.


Sign in / Sign up

Export Citation Format

Share Document