Theoretical modeling and experimental investigation of a V-shaped traveling wave piezoelectric transducer for ultrasonic cavitation Peening: Part A

2021 ◽  
Vol 178 ◽  
pp. 107971
Author(s):  
Fushi Bai ◽  
Liang Wang ◽  
Kunde Yang ◽  
Zhengyao He ◽  
Chengyang Xue ◽  
...  
1992 ◽  
Vol 289 ◽  
Author(s):  
Gebran N. Karam

AbstractThe most important property of cements and concretes after strength is the workability, which is controlled by the rheological characteristics of the mix. Theoretical modeling having proved complicated and in some cases mathematically untractable, cement specialists have concentrated on empirical based models for the last two decades. The major theoretical contributions to date on the properties of colloidal and concentrated suspensions are summarized and a general framework for theoretical modeling of cement viscosity is established. The empirical modeling and the experimental investigation of the rheological properties of fresh cements are reviewed and discussed. A semi-empirical model is proposed and its validity tested in the interpretation of some published experimental results.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


1989 ◽  
Vol 62 (11) ◽  
pp. 1314-1317 ◽  
Author(s):  
D. S. Furuno ◽  
D. B. McDermott ◽  
C. S. Kou ◽  
N. C. Luhmann ◽  
P. Vitello

2020 ◽  
Author(s):  
Liang Wang ◽  
Fushi Bai ◽  
Viktor Hofmann ◽  
Jiamei Jin ◽  
Jens Twiefel

Abstract Most of traditional traveling wave piezoelectric transducers are driven by two phase different excitation signals, leading to a complex control system and seriously limiting their applications in industry. To overcome these issues, a novel traveling wave sandwich piezoelectric transducer with a single-phase drive is proposed in this study. Traveling waves are produced in two driving rings of the transducer while the longitudinal vibration is excited in its sandwich composite beam, due to the coupling property of the combined structure. This results in the production of elliptical motions in the two driving rings to achieve the drive function. An analytical model is firstly developed using the transfer matrix method to analyze the dynamic behavior of the proposed transducer. Its vibration characteristics are measured and compared with computational results to validate the effectiveness of the proposed transfer matrix model. Besides, the driving concept of the transducer is investigated by computing the motion trajectory of surface points of the driving ring and the quality of traveling wave of the driving ring. Additionally, application example investigations on the driving effect of the proposed transducer are carried out by constructing and assembling a tracked mobile system. Experimental results indicated that 1) the assembled tracked mobile system moved in the driving frequency of 19410 Hz corresponding to its maximum mean velocity through frequency sensitivity experiments; 2) motion characteristic and traction performance measurements of the system prototype presented its maximum mean velocity with 59 mm/s and its maximum stalling traction force with 1.65 N, at the excitation voltage of 500 V RMS . These experimental results demonstrate the feasibility of the proposed traveling wave sandwich piezoelectric transducer.


Sign in / Sign up

Export Citation Format

Share Document