Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants

2018 ◽  
Vol 221 ◽  
pp. 610-617 ◽  
Author(s):  
Dongyang Shi ◽  
Xia Zhang ◽  
Jianji Wang ◽  
Jing Fan
2012 ◽  
Vol 573-574 ◽  
pp. 155-162
Author(s):  
Zhi Hua Pang ◽  
Xiao Shan Jia ◽  
Kai Liu ◽  
Zhen Xing Wang ◽  
Qi Jing Luo ◽  
...  

Taking the organic modified montmorillonite as a carrier and dispersant, the supported nanoscale zero-valent iron materials with different iron contents were synthesized through the ferrous sulfate (FeSO4) and the sodium borohydride (NaBH4) in it. The structure and morphology of the materials were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Finally, the performances of the supported nanoscale zero-valent iron were studied by high-performance liquid chromatography to determine the adsorption and degradation of 4-chlorophenol. The results indicate that the supported nanoscale zero-valent iron was well dispersed,different iron dosages imposed a visible effect on the morphology and particle diameter of iron;the degradation of 4-chlorophenol resulted from adsorption and degradation processes. Materials with different iron contents exhibited significantly different performance levels in terms of 4-chlorophenol adsorption and degradation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abbas Khodabakhshi ◽  
Fazel Mohammadi-Moghadam ◽  
Mohammad Mehdi Amin ◽  
Sara Hamati ◽  
Shakila Hayarian

Paraquat is the most important herbicide of the bipyridyl group. The aim of the present study was to compare the removal of paraquat herbicide from aqueous solutions using nanoscale zero-valent iron-pumice/diatomite composites. In this study, nZVI was supported with diatomite and pumice. Scanning electron microscopy (SEM) analysis, X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectrometry (FTIR), and specific surface area tests (BET) were used to evaluate the properties of nanoadsorbents. The residual concentration of paraquat in aqueous solution was detected by high-performance liquid chromatography (HPLC). Then, the effects of different variables including the pollutant concentration, contact time, temperature, adsorbents (D-nZVI and P-nZVI) dose, and pH, were investigated in a lab scale batch system. The results showed that the optimal pH for both processes was 3.74. In optimal conditions, the efficiencies of D-nZVI and P-nZVI were 92.76% and 85.28%, respectively. In addition, isotherm and adsorption kinetics studies indicated that P-nZVI follows the Langmuir and Freundlich isotherm models, and D-nZVI follows the Langmuir isotherm model, and both processes follow pseudo-second-order kinetics. The results indicated that the synthesized nanoparticles were suitable for removing paraquat from aqueous solutions. Both adsorbents were found to be very effective in removing similar compounds at ambient temperature in a short time.


2020 ◽  
Vol 6 (8) ◽  
pp. 2223-2238 ◽  
Author(s):  
Arvid Masud ◽  
Nita G. Chavez Soria ◽  
Diana S. Aga ◽  
Nirupam Aich

Reduced graphene oxide-nanoscale zero valent iron (rGO–nZVI) nanohybrid, with tunable adsorption sites of rGO and unique catalytic redox activity of nZVI, perform enhanced removal of diverse PPCPs from water.


Author(s):  
Haiyan Song ◽  
Wei Liu ◽  
Fansheng Meng ◽  
Qi Yang ◽  
Niandong Guo

Nanoscale zero-valent iron (nZVI) has attracted considerable attention for its potential to sequestrate and immobilize heavy metals such as Cr(VI) from an aqueous solution. However, nZVI can be easily oxidized and agglomerate, which strongly affects the removal efficiency. In this study, graphene-based nZVI (nZVI/rGO) composites coupled with ultrasonic (US) pretreatment were studied to solve the above problems and conduct the experiments of Cr(VI) removal from an aqueous solution. SEM-EDS, BET, XRD, and XPS were performed to analyze the morphology and structures of the composites. The findings showed that the removal efficiency of Cr(VI) in 30 min was increased from 45.84% on nZVI to 78.01% on nZVI/rGO and the removal process performed coupled with ultrasonic pretreatment could greatly shorten the reaction time to 15 min. Influencing factors such as the initial pH, temperature, initial Cr(VI) concentration, and co-existing anions were studied. The results showed that the initial pH was a principal factor. The presence of HPO42−, NO3−, and Cl− had a strong inhibitory effect on this process, while the presence of SO42− promoted the reactivity of nZVI/rGO. Combined with the above results, the process of Cr(VI) removal in US-nZVI/rGO system consisted of two phases: (1) The initial stage is dominated by solution reaction. Cr(VI) was reduced in the solution by Fe2+ caused by ultrasonic cavitation. (2) In the following processes, adsorption, reduction, and coprecipitation coexisted. The addition of rGO enhanced electron transportability weakened the influence of passivation layers and improved the dispersion of nZVI particles. Ultrasonic cavitation caused pores and corrosion at the passivation layers and fresh Fe0 core was exposed, which improved the reactivity of the composites.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 452-461
Author(s):  
Yi Han ◽  
Xian Zhou ◽  
Li Lei ◽  
Huiqun Sun ◽  
Zhiyuan Niu ◽  
...  

In order to improve the utilization of nanoscale zero-valent iron (nZVI) in activating persulfate (PS), a composite material of nZVI/CSW with nZVI supported on calcium sulfate whiskers (CSWs) was synthesized in this study.


Sign in / Sign up

Export Citation Format

Share Document