Preparation, Characterization and their Performance of the Supported Nanoscale Zero-Valent Iron Materials with Different Iron Contents

2012 ◽  
Vol 573-574 ◽  
pp. 155-162
Author(s):  
Zhi Hua Pang ◽  
Xiao Shan Jia ◽  
Kai Liu ◽  
Zhen Xing Wang ◽  
Qi Jing Luo ◽  
...  

Taking the organic modified montmorillonite as a carrier and dispersant, the supported nanoscale zero-valent iron materials with different iron contents were synthesized through the ferrous sulfate (FeSO4) and the sodium borohydride (NaBH4) in it. The structure and morphology of the materials were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Finally, the performances of the supported nanoscale zero-valent iron were studied by high-performance liquid chromatography to determine the adsorption and degradation of 4-chlorophenol. The results indicate that the supported nanoscale zero-valent iron was well dispersed,different iron dosages imposed a visible effect on the morphology and particle diameter of iron;the degradation of 4-chlorophenol resulted from adsorption and degradation processes. Materials with different iron contents exhibited significantly different performance levels in terms of 4-chlorophenol adsorption and degradation.

2019 ◽  
Vol 80 (6) ◽  
pp. 1076-1084 ◽  
Author(s):  
Hualin Chen ◽  
Huajun Xie ◽  
Jiangmin Zhou ◽  
Yueliang Tao ◽  
Yongpu Zhang ◽  
...  

Abstract In this study, starch-stabilized nanoscale zero-valent iron (S-nZVI) was produced using the liquid-phase reduction method. It was used to remove chromium from wastewater, and compared to a commercial nanoscale zero-valent iron (C-nZVI). Both nZVIs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results showed that S-nZVI had smaller particles and a more uniform particle size distribution than C-nZVI. Both nZVIs showed a core-shell structure with the Fe0 core prominently surrounded by less iron oxides of Fe2+ and Fe3+. The optimal application methods to remove Cr(VI) from wastewater were also explored. The results showed that both the removal efficiencies of total Cr and Cr(VI) increased with increases in the addition of nZVIs, while the removal efficiencies of total Cr and Cr(VI) by S-nZVI were clearly higher than that of C-nZVI, especially in a low pH range (pH = 1.0–6.0). This research indicated that starch-stabilized nanoscale zero-valent iron is a valuable material to remove heavy metals from wastewater due to its stability and high reactivity.


2016 ◽  
Vol 5 ◽  
pp. 81-88 ◽  
Author(s):  
Viktoriia Prus ◽  
Nataliya Zhdanyuk

A new class of nanoscale zero-valent iron particles supported on natural montmorillonite and organo-montmorillonite were synthesized and the feasibility for the removal of and was examined through laboratory batch test. The X – ray diffraction (XRD) and Fourier Transform Infrared spectrum (FTIR) investigation has been applied for determination of the particle size and mechanism of remediation process. The aim of this study was to enhance the reduction of persistent environmental pollutants difficult to degrade by immobilization of nanoscale zero-valent iron on an organo-montmorillonite. Batch experiments indicated that the reduction of both and was much greater with organo-montmorillonite supported iron nanoparticles reaching removal rate up to 98.5% and 95.6% respectively at the initial metal concentrations of 50 mg/L. Iron and crystalline iron oxide were detected by X-ray diffraction patterns. In the FTIR spectrum, CH2 groups were found in iron nanoparticles supported on hexadecyltrimethylammonium bromide modified montmorillonite (HDTMA-Mont/nZVI) particles but were significantly weakened in comparison with the spectrum of hexadecyl trimethylammonium bromide (HDTMA). Other factor that affects the efficiency of heavy metals removal such as pH values was also investigated. The obtained data and review of the current literature have given the opportunity to figure out the mechanisms of and removal which may thus promote the industrial application of nZVI technique in environmental remediation by changing the hydrophilic – hydrophobic properties of source systems.


2020 ◽  
Vol 82 (7) ◽  
pp. 1339-1349
Author(s):  
Fengfeng Ma ◽  
Bakunzibake Philippe ◽  
Baowei Zhao ◽  
Jingru Diao ◽  
Jian Li

Abstract Flax straw biochar (FSBC)-supported nanoscale zero-valent iron (nZVI) composite (nZVI-FSBC) combining the advantages of nZVI and biochar was synthesized and tested for Cr(VI) removal efficiency from aqueous solution. Surface morphology and structure of FSBC and nZVI-FSBC were characterized by scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller techniques, which help to clarify the mechanism of Cr(VI) removal from aqueous solution. The adsorption of Cr(VI) onto FSBC and nZVI-FSBC was best described by the pseudo-second-order and the Sips model. Compared with FSBC, nZVI-FSBC remarkably improved the performance in removing Cr(VI) under identical experimental conditions. Due to the collaborative effect of adsorption and reduction of nZVI-FSBC, the adsorption capacity of nZVI-FSBC for Cr(VI) is up to 186.99 mg/g. The results obtained by XPS, XRD, and FTIR confirmed that adsorption and reduction dominated the processes of Cr(VI) removal by nZVI-FSBC. As a supporter, FSBC not only improved the dispersion of nZVI, but also undertook the adsorption task of Cr(VI) removal. The surface oxygen-containing functional groups of nZVI-FSBC mainly participated in the adsorption part, and the nZVI promoted the Cr(VI) removal through the redox reactions. These observations indicated that the nZVI-FSBC can be considered as potential adsorbents to remove Cr(VI) for environment remediation.


2020 ◽  
Vol 9 (1) ◽  
pp. 359-365
Author(s):  
Hui Shu ◽  
Yujian Song ◽  
Qiang Liu ◽  
Maobin Luo

AbstractTiO2 has many advantages, such as UV resistance, thermal stability, and antibacterial; the attention toward TiO2 composite materials (TCMs) is rapidly increasing in the protection of stone culture relics. An innovative rod-shaped TCM was synthesized in this study. The structure and morphology of TCM were studied by X-ray diffraction and scanning electron microscopy. The acid resistance, weather resistance, hydrophilicity, and photocatalytic performance of TCM had been investigated. The experimental results indicated that TCM has good protection effects. The stone sample treated with TCM has stronger acid resistance and weather resistance, better hydrophilicity, and more excellent photocatalytic activity compared with the untreated stone. More importantly, the stone treated with TCM has better acid resistance and weather resistance than that treated with normal shaped TiO2 materials of the previous study. This work describes an effective way to protect stone cultural relics.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2011 ◽  
Vol 197-198 ◽  
pp. 456-459
Author(s):  
Xian Ming Liu ◽  
Wen Liang Gao

Spinel-perovskite multiferroics of NiFe2O4/BiFeO3 nanoparticles were prepared by modified Pechini method. The structure and morphology of the composites were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the composites consisted of spinel NiFe2O4 and perovskite BiFeO3 after annealed at 700°C for 2h, and the particle size ranges from 40 to 100nm. VSM and ME results indicated that the nanocomposites exhibited both tuning magnetic properties and a ME effect. The ME effect of the nanocomposites strongly depended on the magnetic bias and magnetic field frequency.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


2012 ◽  
Vol 214 ◽  
pp. 31-34
Author(s):  
Fu Quan Guo ◽  
Ying Ying Li ◽  
Bin Guo ◽  
Hao Liang

Optical–grade polycarbonate (PC) was separated from optical disks by a chemical approach and used to prepare nanocomposite to make full use of the wasted polymers. A quaternary ammonium-modified montmorillonite (organic montmorillonite, OMMT) was chosen as a modifier and an auxiliary functional resin (CBT160) was utilized to exfoliate the layers of montmorillonite. The characterization results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) for PC/ OMMT (5wt %) revealed that an exfoliation structure of the nanocomposite was obtained. The mechanical measurements show a great increase in tensile strength and Izod impact strength of PC/ OMMT nanocomposite compared with the recycled optical–grade PC.


2021 ◽  
Vol 21 (11) ◽  
pp. 5592-5602
Author(s):  
Samira Almasi ◽  
Ali Mohammad Rashidi

The effect of the yttria-stabilized zirconia (YSZ) nanoparticle loading in an electro-less bath was considered as one of the vital synthesis variables for control Ni content and microstructure of prepared nanocomposite particles, which are two crucial factors to achieving high-performance SOFC anode. Nanocomposite particles were prepared using a simple electroless method without any expensive pretreatment of sensitizing by Sn2+ ions as well as activating by Pd2+ ions that are usually used to apply nickel coating on the surface of a non-conductive substrate. The process was performed by adding YSZ nanoparticles into NaOH solution, separating them from the solution by the centrifugal method, then providing several water-based nanofluids with different concentrations of activated YSZ nanoparticles, mixing them with NiCI2 solution, followed by adding the hydrazine and then NaOH solution. X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis were used to analyze the prepared nanocomposite particles. It is observed that after adding YSZ nanoparticles into the NaOH solution, the pH of the solution varied gradually from a starting pH of 10.2 to 9. Also, by increasing the YSZ nanoparticles loading in the electroless bath from 76 mg/l to 126 mg/l, the grain size of Ni deposits, the Ni content and the average size of the prepared nanocomposite particles decreased. The electrochemical mechanism previously proposed for the nickel ion reduction was modified, and a novel analytical model was proposed for variation of the efficiency of Ni deposition with YSZ nanoparticles loading.


2014 ◽  
Vol 977 ◽  
pp. 82-85
Author(s):  
Ming Li ◽  
Yan Zhen Yu ◽  
Juan Ting Wang

A new composite coagulant polymeric aluminum zinc ferric (PAZF) was synthesized from industrial wastes. The structure and morphology of the coagulant was characterized by X-ray Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM) and the coagulation performances were evaluated by dyeing-printing wastewater treatment. The results show that new complex compounds are formed in PAZF. Compared with poly aluminum chloride (PAC), the contents of ionic polymerized bonds and the cross-copolymerization among Fe (III), Al (III) and Zn (II) hydroxyl polymerized bonds are increase obviously, and the surface morphology of PAZF presents a net-like structure with the longer molecular chain. Coagulation experiments indicate that PAZF exhibits better coagulation performance in removing turbidity, COD and chromaticity.


Sign in / Sign up

Export Citation Format

Share Document