scholarly journals Comparison of Paraquat Herbicide Removal from Aqueous Solutions using Nanoscale Zero-Valent Iron-Pumice/Diatomite Composites

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abbas Khodabakhshi ◽  
Fazel Mohammadi-Moghadam ◽  
Mohammad Mehdi Amin ◽  
Sara Hamati ◽  
Shakila Hayarian

Paraquat is the most important herbicide of the bipyridyl group. The aim of the present study was to compare the removal of paraquat herbicide from aqueous solutions using nanoscale zero-valent iron-pumice/diatomite composites. In this study, nZVI was supported with diatomite and pumice. Scanning electron microscopy (SEM) analysis, X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectrometry (FTIR), and specific surface area tests (BET) were used to evaluate the properties of nanoadsorbents. The residual concentration of paraquat in aqueous solution was detected by high-performance liquid chromatography (HPLC). Then, the effects of different variables including the pollutant concentration, contact time, temperature, adsorbents (D-nZVI and P-nZVI) dose, and pH, were investigated in a lab scale batch system. The results showed that the optimal pH for both processes was 3.74. In optimal conditions, the efficiencies of D-nZVI and P-nZVI were 92.76% and 85.28%, respectively. In addition, isotherm and adsorption kinetics studies indicated that P-nZVI follows the Langmuir and Freundlich isotherm models, and D-nZVI follows the Langmuir isotherm model, and both processes follow pseudo-second-order kinetics. The results indicated that the synthesized nanoparticles were suitable for removing paraquat from aqueous solutions. Both adsorbents were found to be very effective in removing similar compounds at ambient temperature in a short time.

2021 ◽  
Vol 232 ◽  
pp. 149-164
Author(s):  
Hui Xu ◽  
Minzhang Chen ◽  
Yajuan Zhang ◽  
Pengdong Chen ◽  
Yong Chen

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


2008 ◽  
Vol 26 (9) ◽  
pp. 693-703 ◽  
Author(s):  
P. Senthil Kumar ◽  
K. Kirthika ◽  
K. Sathish Kumar

The removal of hexavalent chromium, Cr(VI), from aqueous solutions under different conditions using an anion-exchange resin (AXR) as an adsorbent was investigated under batch conditions. Such studies indicated that the percentage adsorption decreased with increasing initial Cr(VI) concentration, with the maximum removal of such ions occurred at a pH value of ca. 2.0. Both the Langmuir and Freundlich isotherm models were capable of reproducing the isotherms obtained experimentally. The sorption process was rapid during the first 20 min with equilibrium being attained within 30 min. The process followed first-order kinetics. The results demonstrate that such anion-exchange resins can be used for the efficient removal of Cr(VI) ions from water and wastewater.


2020 ◽  
Vol 7 (4) ◽  
pp. 045002
Author(s):  
Shang-Qun Li ◽  
Chuang Yu ◽  
Ze-Xiang Wu ◽  
Xiao-Qing Cai ◽  
Fu-Sheng Zha

RSC Advances ◽  
2019 ◽  
Vol 9 (67) ◽  
pp. 39475-39487 ◽  
Author(s):  
Tingyi Liu ◽  
Zhengchao Zhang ◽  
Zhaohui Wang ◽  
Zhong-Liang Wang ◽  
Richard Bush

A zirconium 1,4-dicarboxybenzene metal–organic framework (UiO-66 MOF) was successfully used as a template to enhance the distribution and activity of nanoscale zero-valent iron (NZVI).


2018 ◽  
Vol 6 (5) ◽  
pp. 6207-6220 ◽  
Author(s):  
Osama Eljamal ◽  
Relebohile Mokete ◽  
Nobuhiro Matsunaga ◽  
Yuji Sugihara

Chemosphere ◽  
2019 ◽  
Vol 220 ◽  
pp. 523-530 ◽  
Author(s):  
Yujun Cheng ◽  
Haoran Dong ◽  
Yue Lu ◽  
Kunjie Hou ◽  
Yaoyao Wang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1024 ◽  
Author(s):  
Gulzhian I. Dzhardimalieva ◽  
Rose K. Baimuratova ◽  
Evgeniya I. Knerelman ◽  
Galina I. Davydova ◽  
Sarkyt E. Kudaibergenov ◽  
...  

Several important synthesis pathways for metal-organic frameworks (MOFs) were applied to determine how the synthesis methods and conditions affect the structure and adsorption capacity of the resulting samples. In the present work, three different synthesis routes were used to obtain copper trimesinate coordination polymer: Slow evaporation (A), solvothermal synthesis using a polyethylene glycol (PEG-1500) modulator (B), and green synthesis in water (C). This MOF was characterized by elemental analysis, infrared spectrometry, X-ray diffraction, scanning electron microscopy, thermogravimetry and volumetric nitrogen adsorption/desorption. The samples have permanent porosity and a microporous structure with a large surface area corresponding to the adsorption type I. The obtained MOF was tested as a sorbent to remove organic dyes methylene blue (МВ), Congo red (CR) and methyl violet (MV) as examples. Dye adsorption followed pseudo-first-order kinetics. The equilibrium data were fitted to the Langmuir and Freundlich isotherm models, and the isotherm constants were determined. Thermodynamic parameters, such as changes in the free energy of adsorption (∆G0), enthalpy (∆H0), and entropy (∆S0), were calculated. Thermolysis of copper trimesinate leads to the formation of carbon materials Cu@C with a high purity.


2014 ◽  
Vol 476-477 ◽  
pp. 20-28 ◽  
Author(s):  
Nina Kržišnik ◽  
Ana Mladenovič ◽  
Andrijana Sever Škapin ◽  
Luka Škrlep ◽  
Janez Ščančar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document