Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide pH range

2020 ◽  
Vol 265 ◽  
pp. 118578 ◽  
Author(s):  
Yu-An Chen ◽  
Huishan Yang ◽  
Denghao Ouyang ◽  
Tongxin Liu ◽  
Dehua Liu ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (31) ◽  
pp. 17664-17673 ◽  
Author(s):  
Kai Wang ◽  
Yi Yang ◽  
Tian C. Zhang ◽  
Ying Liang ◽  
Qingguo Wang

Magnetic Co-doped Fe3O4@FeOOH nanocomposites were prepared in one step using the hydrothermal synthesis process for catalyzing peroxymonosulfate (PMS) to degrade refractory methylene blue (MB) at a wide pH range (3.0–10.0).


2020 ◽  
Vol 7 (8) ◽  
pp. 1340-1348
Author(s):  
Zifang Cheng ◽  
Bolong Huang ◽  
Yecan Pi ◽  
Leigang Li ◽  
Qi Shao ◽  
...  

Abstract Ultrathin two-dimensional (2D) materials have attracted considerable attention for their unique physicochemical properties and promising applications; however, preparation of freestanding ultrathin 2D noble metal remains a significant challenge. Here, for the first time, we report use of a wet-chemical method to synthesize partially hydroxylated ultrathin Ir nanosheets (Ir-NSs) of only five to six atomic layers’ thickness. Detailed analysis indicates that the growth confinement effect of carbon monoxide and the partially hydroxylated surface play a critical role in formation of the ultrathin structure. The ultrathin Ir-NSs exhibit excellent performance for both the hydrogen evolution reaction and oxygen evolution reaction in a wide pH range, outperforming the state-of-the-art Pt/C and IrO2, respectively. Density-functional theory calculations reveal that the partial hydroxylation not only enhances the surface electron transfer between Ir-sites and intermediate O-species, but also guarantees efficient initial activation of bond cleavage of H-O-H for first-step H2O splitting. This, ultimately, breaks through barriers to full water splitting, with efficient electron transfer essentially maintained.


1991 ◽  
Vol 56 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Juan A. Squella ◽  
Luis J. Nuñez-Vergara ◽  
Hernan Rodríguez ◽  
Amelia Márquez ◽  
Jose M. Rodríguez-Mellado ◽  
...  

Five N-p-phenyl substituted benzamidines were studied by DC and DP polarography in a wide pH range. Coulometric results show that the overall processes are four-electron reductions. Logarithmic analysis of the waves indicate that the process are irreversible. The influence of the pH on the polarographic parameters was also studied. A UV spectrophotometric study was performed in the pH range 2-13. In basic media some variations in the absorption bands were observed due to the dissociation of the amidine group. A determination of the pK values was made by deconvolution of the spectra. Correlations of both the electrochemical parameters and spectrophotometric pK values with the Hammett substituent constants were obtained.


Author(s):  
Manoj Kumar Panjwani ◽  
Qing Wang ◽  
Yueming Ma ◽  
Yuxuan Lin ◽  
Feng Xiao ◽  
...  

The development of a heterogeneous Fenton-like catalyst, possessing high degradation efficiency in a wide pH range, is crucial for wastewater treatment. The Fe-Mn-SiO2 catalyst was designed, and prepared by a...


RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 11872-11881
Author(s):  
Xinye Zhang ◽  
Xueyue Zhang ◽  
Keting Feng ◽  
Xiaoyun Hu ◽  
Jun Fan ◽  
...  

A CdSe/C/TiO2 nanofiber film was prepared for enhanced photoelectrochemical degradation ability, and carbon membrane as a carrier-transfer-channel could promote electron transfer.


Sign in / Sign up

Export Citation Format

Share Document