Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load

2015 ◽  
Vol 143 ◽  
pp. 130-137 ◽  
Author(s):  
Bo Yang ◽  
Chengxun Xi ◽  
Xing Wei ◽  
Ke Zeng ◽  
Ming-Chia Lai
Author(s):  
Jiantong Song ◽  
Chunhua Zhang ◽  
Guoqing Lin ◽  
Quanchang Zhang

In order to reduce the fuel consumption and hydrocarbon and CO emissions of liquefied natural gas-diesel dual-fuel engines under light loads, an optimization control scheme, in which the dual-fuel engine runs in original diesel mode under light loads, is used in this paper. The performance and exhaust emissions of the dual-fuel engine and the original diesel engine are compared and analyzed by bench tests of an electronic control common-rail diesel engine. Experimental results show that the brake-specific fuel consumption and hydrocarbon and CO emissions of the liquefied natural gas-diesel dual-fuel engine are not deteriorated under light loads. Compared with diesel, the brake power and torque of dual-fuel remain unchanged, the brake-specific fuel consumption decreases, and the smoke density and CO2 emissions of dual-fuel decrease, while the hydrocarbon and CO emissions increase, and there is no significant difference in NOx emissions.


Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
Kalyan K. Srinivasan

Abstract Dual fuel diesel-methane low temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual fuel LTC typically exhibit poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting the methane combustion once the process is initiated by the first one. In this work, diesel-methane dual fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas surrogate). A multidimensional model is first validated in comparison with experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 CAD and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion emissions are investigated, again showing good agreement with experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline. Furthermore, it is shown that post-injection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.


Sign in / Sign up

Export Citation Format

Share Document