Research on combustion process of a free piston diesel linear generator

2016 ◽  
Vol 161 ◽  
pp. 395-403 ◽  
Author(s):  
Huihua Feng ◽  
Chendong Guo ◽  
Chenheng Yuan ◽  
Yuyao Guo ◽  
Zhengxing Zuo ◽  
...  
Author(s):  
Roman Virsik ◽  
Frank Rinderknecht ◽  
Horst E. Friedrich

The free piston linear generator is a new electromechanical generator. It converts chemical energy into electrical energy by means of a combustion process, a linear generator and a gas spring. Thereby the technology aims to have better properties than other electromechanical generators. Therefore this publication deals with the explanation of the concept, the characteristics of a free piston linear generator and one of the challenges in the development. In order to use a port scavenging the emission issue is the challenge and has to be solved. One possible solution is the use of solid lubricants to substitute motor oil. The development methodology and one aspect of the development will be explained.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2179 ◽  
Author(s):  
Xuezhen Wang ◽  
Feixue Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chi Zhang

The Free-piston linear generator (FPLG) is a novel energy converter which can generate electrical energy and is regarded as a potential technology for solving the restriction of the short driving range of electric vehicles. Getting rid of the crank and flywheel mechanism, FPLG obtains some advantages of a variable compression ratio, compact size, and highly-efficient power generation. Linear electric machine (LEM) design and piston motion control are two key technologies of FPLG. However, they are currently the main obstacles to the favorable performance of FPLG. LEM being used to drive the piston motion or generate electric energy is an integrated design including a motor/generator. Various types of LEMs are investigated, and suitable application scenarios based on advantages and disadvantages are discussed. The FPLG’s controller is used to ensure stable operation and highly-efficient output. However, cycle-to-cycle variations of the combustion process and motor/generator switching make it difficult to improve the performance of the piston motion control. Comments on the advantages and disadvantages of different piston motion control methods are also given in this paper.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Roman Virsik ◽  
Frank Rinderknecht ◽  
Horst E. Friedrich

The free-piston linear generator (FPLG) is a new electromechanical generator. It converts chemical energy into electrical energy by means of a combustion process, a linear generator, and a gas spring. The FPLG does not use any crankshaft, which is responsible for a lot of losses. Thereby, the technology aims to have better properties than other electromechanical generators: higher efficiency over wide range of operating points, better noise–vibration–harshness package. This publication deals with the explanation of the concept, the characteristics of a FPLG, and one of the challenges in the development. In order to use a port scavenging, the emission issue is the challenge and has to be solved. One possible solution is the use of solid lubricants to substitute motor oil. On this way, the development methodology and one aspect of the development is explained.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3530
Author(s):  
Fukang Ma ◽  
Shuanlu Zhang ◽  
Zhenfeng Zhao ◽  
Yifang Wang

The hydraulic free-piston engine (HFPE) is a kind of hybrid-powered machine which combines the reciprocating piston-type internal combustion engine and the plunger pump as a whole. In recent years, the HFPE has been investigated by a number of research groups worldwide due to its potential advantages of high efficiency, energy savings, reduced emissions and multi-fuel operation. Therefore, our study aimed to assess the operating characteristics, core questions and research progress of HFPEs via a systematic review and meta-analysis. We included operational control, starting characteristics, misfire characteristics, in-cylinder working processes and operating stability. We conducted the literature search using electronic databases. The research on HFPEs has mainly concentrated on four kinds of free-piston engine, according to piston arrangement form: single piston, dual pistons, opposed pistons and four-cylinder complex configuration. HFPE research in China is mainly conducted in Zhejiang University, Tianjin University, Jilin University and the Beijing Institute of Technology. In addition, in China, research has mainly focused on the in-cylinder combustion process while a piston is free by considering in-cylinder combustion machinery and piston dynamics. Regarding future research, it is very important that we solve the instabilities brought about by chance fluctuations in the combustion process, which will involve the hydraulic system’s efficiency, the cyclical variation, the method of predicting instability and the recovery after instability.


Energy ◽  
2021 ◽  
pp. 121026
Author(s):  
Xiaodong Yan ◽  
Huihua Feng ◽  
Zhengxing Zuo ◽  
Zhiyuan Zhang ◽  
Limin Wu ◽  
...  

Author(s):  
Wasiu B. Ayandotun ◽  
A. Rashid A. Aziz ◽  
Zainal A.B.A. Karim ◽  
Salah E. Mohammed ◽  
Ezrann Z. Zainal A. ◽  
...  

Author(s):  
Karl V. Hoose ◽  
Eric E. Shorey

The traditional reciprocating I.C. engine has evolved to a point where significant improvements in thermal efficiency and specific power are not expected. Modifications to existing engines may prove to be difficult and expensive while resulting in only marginal gains. In addition, most modifications result in added components that often increase cost and decrease reliability of the system as a whole. For applications requiring major advances in performance, such as unmanned vehicles, meeting mission requirements will likely stem from a revolutionary rather than an evolutionary engine design. The slider crank mechanism is a major impediment to the traditional reciprocating I.C. engine. Although this mechanism has been used for the past 100 years, it is very wasteful of the available energy supplied by the combustion process, where piston-liner interactions from this arrangement accounts for 50–70% of the total friction losses in this engine design. Eliminating the slider crank could significantly reduce friction losses and provide additional benefits that can increase fuel conversion efficiency. The HiPerTEC engine is an opposed, free-piston engine arranged in a toroidal configuration with two counter reciprocating sets of pistons. The counter reciprocating masses eliminate the vibration found in linear free-piston engines. The HiPerTEC employs a unique shared volume configuration where the swept volume is twice the physical cylinder volume. This attribute offers a significant increase in specific power, while the free-piston characteristics provide for substantial gains in thermodynamic cycle efficiency. An eight cylinder/chamber arrangement offers balanced operation in both two and four-stroke cycle modes to allow for a wide operating envelope. The final HiPerTEC configuration will require advanced materials to address lubrication and cooling requirements. This paper discusses the HiPerTEC design, operating characteristics, development progress to date, and the challenges that lie ahead.


Energies ◽  
2016 ◽  
Vol 9 (8) ◽  
pp. 655 ◽  
Author(s):  
Yuxi Miao ◽  
Zhengxing Zuo ◽  
Huihua Feng ◽  
Chendong Guo ◽  
Yu Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document