An interactive planning model for sustainable urban water and energy supply

2019 ◽  
Vol 235 ◽  
pp. 332-345 ◽  
Author(s):  
Negar Vakilifard ◽  
Parisa A. Bahri ◽  
Martin Anda ◽  
Goen Ho
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2810 ◽  
Author(s):  
He Huang ◽  
DaPeng Liang ◽  
Zhen Tong

Many research works have demonstrated that taking the combined cooling, heating and power system (CCHP) as the core equipment, an integrated energy system (IES), which provides multiple energy flows by a combination of different energy production equipment can bring obvious benefit to energy efficiency, CO2 emission reduction and operational economy in urban areas. Compared with isolated IES, an integrated energy micro-grid (IEMG) which is formed by connecting multiple regions’ IES together, through a distribution and thermal network, can further improve the reliability, flexibility, cleanliness and the economy of a regional energy supply. Based on the existing IES model, this paper describes the basic structure of IEMG and built an IEMG planning model. The planning was based on the mixed integer linear programming. Economically, construction planning configuration are calculated by using known electricity, heating and cooling loads information and the given multiple equipment selection schemes. Finally, the model is validated by a case study, which includes heating, cooling, transitional and extreme load scenarios, proved the feasibility of planning model. The results show that the application of IEMG can effectively improve the economy of a regional energy supply.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


Sign in / Sign up

Export Citation Format

Share Document