Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty

2022 ◽  
Vol 307 ◽  
pp. 118314
Author(s):  
Sihua Yin ◽  
Haidong Yang ◽  
Kangkang Xu ◽  
Chengjiu Zhu ◽  
Shaqing Zhang ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2660 ◽  
Author(s):  
Agostinho Rocha ◽  
Armando Araújo ◽  
Adriano Carvalho ◽  
João Sepulveda

Efficient use of energy is currently a very important issue. As conventional energy resources are limited, improving energy efficiency is, nowadays, present in any government policy. Railway systems consume a huge amount of energy, during normal operation, some routes working near maximum energy capacity. Therefore, maximizing energy efficiency in railway systems has, recently, received attention from railway operators, leading to research for new solutions that are able to reduce energy consumption without timetable constraints. In line with these goals, this paper proposes a Simulated Annealing optimization algorithm that minimizes train traction energy, constrained to existing timetable. For computational effort minimization, re-annealing is not used, the maximum number of iterations is one hundred, and generation of cruising and braking velocities is carefully made. A Matlab implementation of the Simulated Annealing optimization algorithm determines the best solution for the optimal speed profile between stations. It uses a dynamic model of the train for energy consumption calculations. Searching for optimal speed profile, as well as scheduling constraints, also uses line shape and velocity limits. As results are obtained in seconds, this new algorithm can be used as a real-time driver advisory system for energy saving and railway capacity increase. For now, a standalone version, with line data previously loaded, was developed. Comparison between algorithm results and real data, acquired in a railway line, proves its success. An implementation of the developed work as a connected driver advisory system, enabling scheduling and speed constraint updates in real time, is currently under development.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1833 ◽  
Author(s):  
Tamás Bányai

Energy efficiency and environmental issues have been largely neglected in logistics. In a traditional supply chain, the objective of improving energy efficiency is targeted at the level of single parts of the value making chain. Industry 4.0 technologies make it possible to build hyperconnected logistic solutions, where the objective of decreasing energy consumption and economic footprint is targeted at the global level. The problems of energy efficiency are especially relevant in first mile and last mile delivery logistics, where deliveries are composed of individual orders and each order must be picked up and delivered at different locations. Within the frame of this paper, the author describes a real-time scheduling optimization model focusing on energy efficiency of the operation. After a systematic literature review, this paper introduces a mathematical model of last mile delivery problems including scheduling and assignment problems. The objective of the model is to determine the optimal assignment and scheduling for each order so as to minimize energy consumption, which allows to improve energy efficiency. Next, a black hole optimization-based heuristic is described, whose performance is validated with different benchmark functions. The scenario analysis validates the model and evaluates its performance to increase energy efficiency in last mile logistics.


2021 ◽  
Vol 13 (11) ◽  
pp. 6138
Author(s):  
Haiqiang Liu ◽  
Zhihao Zhang ◽  
Xidong Ma ◽  
Weite Lu ◽  
Dongze Li ◽  
...  

Along with the rapid urbanization and economic growth of China over the past decades, the thermal comfort needs of the people in this region have risen dramatically, and at the same time, promoting building energy efficiency is cited as part of the major projects in the 14th five-year plan for energy efficiency improvement. In addition, the outbreak of the COVID-19 epidemic has plunged people into long-term panic, and promoted the entire construction industry to think about a healthier and more sustainable living environment. To respond to the imbalance between energy supply and demand, an optimization analysis based on energy use is developed, assessing the energy efficiency of the window-to-wall ratio (WWR) design and calculating the energy consumption of three different types of residential buildings for both cooling and heating loads as well as for year-round loads. Owing to its harsh climate and huge energy consumption, in this study, the Hot-summer and Cold-winter (HSCW) zone of China was chosen as the experimental setting for the optimization analysis of WWR. Then, in the three main types of residential buildings, including detached houses, multi-story dwellings and high-rise dwellings, a correlation between WWRS and energy consumption in the cooling season, heating season and year-round was built. The comparisons between the WWRS and energy consumption for different types of residential buildings are presented. The design optimization recommendation for WWRS are proposed. It has significant positive meanings for the development of green and sustainably designed residential buildings that offer high levels of thermal comfort and energy efficiency.


2019 ◽  
Vol 12 (1) ◽  
pp. 28-53 ◽  
Author(s):  
Un Hee Schiefelbein ◽  
Diovane Soligo ◽  
Vinícius Maran ◽  
José Palazzo M. De Oliveira ◽  
João Carlos Damasceno Lima ◽  
...  

The reduction of electric energy consumption is considered as one of the main challenges in diverse sectors of the economy. To residential customers, the management of energy consumption can bring significant costs reduction and decreased environmental impact. This work presents a solution based on the use of situation-awareness applied in IOT that helps the users to reduce the consumption of electric energy through its own residence. The practical results obtained in the application of this proposal in a real-live scenario confirmed the option of collecting information directly of electrical appliances and inform the user of their energy expenditures in real-time, allowing the knowledge and the management of their expenses.


Author(s):  
Jait Purohit

Energy efficiency (EE) has become an important benchmark in manufacturing industry due the increasing concerns about climate change and tightening of environmental regulations. However, most manufacturing and production industries today are only able to monitor aggregated energy consumption and lack the real-time visibility of EE on the shop floors. The ability to access energy information and effectively analyse such real-time data to extract key indicators is a crucial factor for successful energy management. While enabling real-time online monitoring of Energy Efficiency, it also applies data gathering analysis to detect abnormal energy consumption patterns and quantify energy efficiency gaps. Through a case study of a microfluidic device manufacturing line, we demonstrate how the application can assist energy managers in embedding best energy management practices in their day-to-day operations and improve Energy Efficiency by eliminating possible energy wastages on manufacturing shop floors.


2015 ◽  
Vol 12 (2) ◽  
pp. 135-148 ◽  
Author(s):  
Jijun Zhao ◽  
Siyuan Gao ◽  
Danping Ren ◽  
Zhihua Li ◽  
Liang Xue

In this paper, considering a tradeoff between consumers comfort and energy efficiency, a multi-period joint energy scheduling algorithm (MPJ-ESA) based on prediction of residents energy consumption is proposed, which includes long-period preliminary sch eduling, short-period preliminary scheduling, and real-time fine-tuning scheduling. First, by analyzing historical data of energy consumption, preferred usage profile of consumers is inferred, and the dynamic comfort level is presented. Then the paper uses the wavelet neural networks (WNNs) prediction algorithm to predict the operation of the appliances which are classified into appliances with unschedulable mode and schedulable mode. Based on the energy consumption prediction and dynamic comfort level, home appliances running state are scheduled according to the prediction of renewable energy available amount and real-time pricing (RTP). The simulation results show that scheduling algorithm effectively improves the energy efficiency and enhances user satisfaction with the operation of scheduled appliances and let the consumers comfort and energy efficiency achieve a better tradeoff.


Sign in / Sign up

Export Citation Format

Share Document