Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya

2011 ◽  
Vol 31 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Eduardo Eiji Maeda ◽  
David A. Wiberg ◽  
Petri K.E. Pellikka
Author(s):  
Andreas Christian Braun

Land-use and land-cover analyses based on satellite image classification are used in most, if not all, sub-disciplines of physical geography. Data availability and increasingly simple image classification techniques – nowadays, even implemented in simple geographic information systems – increase the use of such analyses. To assess the quality of such land-use analyses, accuracy metrics are applied. The results are considered to have sufficient quality, exceeding thresholds published in the literature. A typical practice in many studies is to confuse accuracy in remote sensing with quality, as required by physical geography. However, notions such as quality are subject to normative considerations and performative practices, which differ between scientific domains. Recent calls for critical physical geography have stressed that scientific results cannot be understood separately from the values and practices underlying them. This article critically discusses the specific understanding of quality in remote sensing, outlining norms and practices shaping it and their relation to physical geography. It points out that, as a seeming paradox, results considered more accurate in remote sensing terms can be less informative – or meaningful – in geographical terms. Finally, a roadmap of how to apply remote sensing land-use analyses more constructively in physical geography is proposed.


2021 ◽  
Vol 13 (8) ◽  
pp. 1563
Author(s):  
Yuanyuan Tao ◽  
Qianxin Wang

The accurate identification of PLES changes and the discovery of their evolution characteristics is a key issue to improve the ability of the sustainable development for resource-based urban areas. However, the current methods are unsuitable for the long-term and large-scale PLES investigation. In this study, a modified method of PLES recognition is proposed based on the remote sensing image classification and land function evaluation technology. A multi-dimensional index system is constructed, which can provide a comprehensive evaluation for PLES evolution characteristics. For validation of the proposed methods, the remote sensing image, geographic information, and socio-economic data of five resource-based urbans (Zululand in South Africa, Xuzhou in China, Lota in Chile, Surf Coast in Australia, and Ruhr in Germany) from 1975 to 2020 are collected and tested. The results show that the data availability and calculation efficiency are significantly improved by the proposed method, and the recognition precision is better than 87% (Kappa coefficient). Furthermore, the PLES evolution characteristics show obvious differences at the different urban development stages. The expansions of production, living, and ecological space are fastest at the mining, the initial, and the middle ecological restoration stages, respectively. However, the expansion of living space is always increasing at any stage, and the disorder expansion of living space has led to the decrease of integration of production and ecological spaces. Therefore, the active polices should be formulated to guide the transformation of the living space expansion from jumping-type and spreading-type to filling-type, and the renovation of abandoned industrial and mining lands should be encouraged.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jarbou A. Bahrawi ◽  
Mohamed Elhag ◽  
Amal Y. Aldhebiani ◽  
Hanaa K. Galal ◽  
Ahmad K. Hegazy ◽  
...  

Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS) and Geographic Information Systems (GIS) techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE) for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating theK-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha). GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.


2017 ◽  
Vol 13 (S335) ◽  
pp. 58-64 ◽  
Author(s):  
Hebe Cremades

AbstractSophisticated instrumentation dedicated to studying and monitoring our Sun’s activity has proliferated in the past few decades, together with the increasing demand of specialized space weather forecasts that address the needs of commercial and government systems. As a result, theoretical and empirical models and techniques of increasing complexity have been developed, aimed at forecasting the occurrence of solar disturbances, their evolution, and time of arrival to Earth. Here we will review groundbreaking and recent methods to predict the propagation and evolution of coronal mass ejections and their driven shocks. The methods rely on a wealth of data sets provided by ground- and space-based observatories, involving remote-sensing observations of the corona and the heliosphere, as well as detections of radio waves.


2011 ◽  
pp. 163-178 ◽  
Author(s):  
Temesgen Enku ◽  
Christiaan van der Tol ◽  
Ambro S.M. Gieske ◽  
Tom H.M. Rientjes

2020 ◽  
Vol 12 (12) ◽  
pp. 2007
Author(s):  
Kathryn Sheffield ◽  
Tony Dugdale

Weeds can impact many ecosystems, including natural, urban and agricultural environments. This paper discusses core weed biosecurity program concepts and considerations for urban and peri-urban areas from a remote sensing perspective and reviews the contribution of remote sensing to weed detection and management in these environments. Urban and peri-urban landscapes are typically heterogenous ecosystems with a variety of vectors for invasive weed species introduction and dispersal. This diversity requires agile systems to support landscape-scale detection and monitoring, while accommodating more site-specific management and eradication goals. The integration of remote sensing technologies within biosecurity programs presents an opportunity to improve weed detection rates, the timeliness of surveillance, distribution and monitoring data availability, and the cost-effectiveness of surveillance and eradication efforts. A framework (the Weed Aerial Surveillance Program) is presented to support a structured approach to integrating multiple remote sensing technologies into urban and peri-urban weed biosecurity and invasive species management efforts. It is designed to support the translation of remote sensing science into operational management outcomes and promote more effective use of remote sensing technologies within biosecurity programs.


2020 ◽  
Vol 12 (3) ◽  
pp. 496 ◽  
Author(s):  
James A. Goodman ◽  
Mui Lay ◽  
Luis Ramirez ◽  
Susan L. Ustin ◽  
Paul J. Haverkamp

Remote sensing is playing an increasingly important role in the monitoring and management of coastal regions, coral reefs, inland lakes, waterways, and other shallow aquatic environments. Ongoing advances in algorithm development, sensor technology, computing capabilities, and data availability are continuing to improve our ability to accurately derive information on water properties, water depth, benthic habitat composition, and ecosystem health. However, given the physical complexity and inherent variability of the aquatic environment, most of the remote sensing models used to address these challenges require localized input parameters to be effective and are thereby limited in geographic scope. Additionally, since the parameters in these models are interconnected, particularly with respect to bathymetry, errors in deriving one parameter can significantly impact the accuracy of other derived parameters and products. This study utilizes hyperspectral data acquired in Hawaii in 2000–2001 and 2017–2018 using NASA’s Classic Airborne Visible/Infrared Imaging Spectrometer to evaluate performance and sensitivity of a well-established semi-analytical inversion model used in the assessment of coral reefs. Analysis is performed at several modeled spatial resolutions to emulate characteristics of different feasible moderate resolution hyperspectral satellites, and data processing is approached with the objective of developing a generalized, scalable, automated workflow. Accuracy of derived water depth is evaluated using bathymetric lidar data, which serves to both validate model performance and underscore the importance of image quality on achieving optimal model output. Data are then used to perform a sensitivity analysis and develop confidence levels for model validity and accuracy. Analysis indicates that derived benthic reflectance is most sensitive to errors in bathymetry at shallower depths, yet remains significant at all depths. The confidence levels provide a first-order method for internal quality assessment to determine the physical extent of where and to what degree model output is considered valid. Consistent results were found across different study sites and different spatial resolutions, confirming the suitability of the model for deriving water depth in complex coral reef environments, and expanding our ability to achieve automated widespread mapping and monitoring of global coral reefs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
François Waldner ◽  
Heidi Horan ◽  
Yang Chen ◽  
Zvi Hochman

Abstract Empirical yield estimation from satellite data has long lacked suitable combinations of spatial and temporal resolutions. Consequently, the selection of metrics, i.e., temporal descriptors that predict grain yield, has likely been driven by practicality and data availability rather than by systematic targetting of critically sensitive periods as suggested by knowledge of crop physiology. The current trend towards hyper-temporal data raises two questions: How does temporality affect the accuracy of empirical models? Which metrics achieve optimal performance? We followed an in silico approach based on crop modelling which can generate any observation frequency, explore a range of growing conditions and reduce the cost of measuring yields in situ. We simulated wheat crops across Australia and regressed six types of metrics derived from the resulting time series of Leaf Area Index (LAI) against wheat yields. Empirical models using advanced LAI metrics achieved national relevance and, contrary to simple metrics, did not benefit from the addition of weather information. This suggests that they already integrate most climatic effects on yield. Simple metrics remained the best choice when LAI data are sparse. As we progress into a data-rich era, our results support a shift towards metrics that truly harness the temporal dimension of LAI data.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 169 ◽  
Author(s):  
Simon N. Topp ◽  
Tamlin M. Pavelsky ◽  
Daniel Jensen ◽  
Marc Simard ◽  
Matthew R. V. Ross

Remote sensing approaches to measuring inland water quality date back nearly 50 years to the beginning of the satellite era. Over this time span, hundreds of peer-reviewed publications have demonstrated promising remote sensing models to estimate biological, chemical, and physical properties of inland waterbodies. Until recently, most of these publications focused largely on algorithm development as opposed to implementation of those algorithms to address specific science questions. This slow evolution contrasts with terrestrial and oceanic remote sensing, where methods development in the 1970s led to publications focused on understanding spatially expansive, complex processes as early as the mid-1980s. This review explores the progression of inland water quality remote sensing from methodological development to scientific applications. We use bibliometric analysis to assess overall patterns in the field and subsequently examine 236 key papers to identify trends in research focus and scale. The results highlight an initial 30 year period where the majority of publications focused on model development and validation followed by a spike in publications, beginning in the early-2000s, applying remote sensing models to analyze spatiotemporal trends, drivers, and impacts of changing water quality on ecosystems and human populations. Recent and emerging resources, including improved data availability and enhanced processing platforms, are enabling researchers to address challenging science questions and model spatiotemporally explicit patterns in water quality. Examination of the literature shows that the past 10–15 years has brought about a focal shift within the field, where researchers are using improved computing resources, datasets, and operational remote sensing algorithms to better understand complex inland water systems. Future satellite missions promise to continue these improvements by providing observational continuity with spatial/spectral resolutions ideal for inland waters.


Sign in / Sign up

Export Citation Format

Share Document