scholarly journals Numerical investigation into nonlinear dynamic behavior of electrically-actuated clamped–clamped micro-beam with squeeze-film damping effect

2014 ◽  
Vol 38 (13) ◽  
pp. 3269-3280 ◽  
Author(s):  
Chin-Chia Liu ◽  
Cheng-Chi Wang
Author(s):  
T. N. Shiau ◽  
C. R. Wang ◽  
D. S. Liu ◽  
W. C. Hsu ◽  
T. H. Young

An investigation is carried out the analysis of nonlinear dynamic behavior on effects of rub-impact caused by oil-rupture in a multi-shafts turbine system with a squeeze film damper. Main components of a multi-shafts turbine system includes an outer shaft, an inner shaft, an impeller shaft, ball bearings and a squeeze film damper. In the squeeze film damper, oil forces can be derived from the short bearing approximation and cavitated film assumption. The system equations of motion are formulated by the global assumed mode method (GAMM) and Lagrange’s approach. The nonlinear behavior of a multi-shafts turbine system which includes the trajectories in time domain, frequency spectra, Poincaré maps, and bifurcation diagrams are investigated. Numerical results show that large vibration amplitude is observed in steady state at rotating speed ratio adjacent to the first natural frequency when there is no squeeze film damper. The nonlinear dynamic behavior of a multi-shafts turbine system goes in its way into aperiodic motion due to oil-rupture and it is unlike the usual way (1T = >2T = >4T = >8T etc) as compared to one shaft rotor system. The typical routes of bifurcation to aperiodic motion are observed in a multi-shafts turbine rotor system and they suddenly turn into aperiodic motion from the periodic motion without any transition. Consequently, the increasing of geometric or oil parameters such as clearance or lubricant viscosity will improve the performance of SFD bearing.


Author(s):  
K. Gjika ◽  
L. San Andrés ◽  
G. D. Larue

Current trends for advanced automotive engines focusing on downsizing, better fuel efficiency, and lower emissions have led to several changes in turbocharger bearing system design and technology. Automotive turbochargers run faster and use engine oils with very low viscosity under high oil inlet temperature and low feed pressure. The development of high performing bearing systems, marrying innovation with reliability, is a persistent challenge. This paper shows progress on the nonlinear dynamic behavior modeling of the rotor-radial bearing system (RBS) incorporating two oil films in series: a hydrodynamic one with a squeeze film damper commonly used in turbochargers. The developed fluid bearing code predicts bearing rotational speed (in the case of fully floating design), operating inner and outer bearing film clearances, effective oil viscosity, taking into account its shear effect, and hydrostatic load. A rotordynamics code uses this input to predict the nonlinear lateral dynamic response of the rotor-bearing system. The model predictions are validated with test data acquired on a high speed turbocharger RBS of a 6.0 mm journal diameter running up to 250,000 rpm (maximum speed), 5W30 oil type, 150°C oil inlet temperature, and 4 bar oil feed pressure. The tests are conducted at a rotordynamics technology laboratory using a high performance data acquisition system. Turbochargers with four combinations of inner and outer RBS clearances are tested. Prediction and measured synchronous response and total motion are in good agreement. Both demonstrate the nonlinear character of the RBS behavior, including several subsynchronous frequency components across the operating speed range. The nonlinear predictive model aids the development of high performance and optimized turbocharger RBS with faster development cycle times and increased reliability.


2015 ◽  
Vol 23 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Weimin Wang ◽  
Fenggang Tao ◽  
Qiang Wang ◽  
Chuankai Qiu ◽  
Zexiang Chen ◽  
...  

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
A. Bouzidane ◽  
M. Thomas

The aim of this research is to study the nonlinear dynamic behavior of a flexible shaft supported by smart hydrostatic squeeze film dampers, which are filled with a negative electrorheological fluid (NERF). A nonlinear model of the hydrostatic squeeze film damper has been developed in order to study the effect of the electrorheological fluid on the dynamic behavior of a flexible shaft. The results obtained are discussed and compared with the linear model, which is restricted to only small vibrations around the equilibrium position. A new smart hydrostatic squeeze film damper is proposed to reduce the transient response of the shaft and transmitted forces by applying an electric field to the NER fluid, which results in modifying its viscosity. The results show that it is possible to effectively monitor the electric field and the viscosity of the fluid inside the hydrostatic squeeze film dampers (HSFD) for a better control of flexible shaft vibration and bearing transmitted forces.


Author(s):  
Kostandin Gjika ◽  
Chris Groves ◽  
Luis San Andre´s ◽  
Gerald D. LaRue

Current trends for advanced automotive engines focusing on downsizing, better fuel efficiency and lower emissions have led to several changes in turbocharger bearing systems design and technology. Automotive turbochargers run faster and use engine oils with very low viscosity under high oil inlet temperature and low feed pressure. The development of high performing bearing systems, marrying innovation with reliability, is a persistent challenge. This paper shows progress on the nonlinear dynamic behavior modeling of rotor-radial bearing system (RBS) incorporating two oil films in series: a hydrodynamic one with a squeeze film damper commonly used in turbochargers. The developed fluid bearing code predicts bearing rotational speed (in case of fully floating design), operating inner and outer bearing film clearances, effective oil viscosity taking into account its shear effect, and hydrostatic load. A rotordynamics code uses this input to predict the nonlinear lateral dynamic response of the rotor-bearing system. The model predictions are validated with test data acquired on a high speed turbocharger RBS of 6.0 mm journal diameter running up to 250,000 rpm (maximum speed), 5W30 oil type, 150 °C oil inlet temperature, and 4 bar oil feed pressure. The tests are conducted at a rotordynamics technology laboratory using a high performance data acquisition system. Turbochargers with four combinations of inner and outer RBS clearances are tested. Prediction and measured synchronous response and total motion are in good agreement. Both demonstrate the nonlinear character of RBS behavior including several subsynchronous frequencies components across the operating speed range. The non linear predictive model aids the development of high performance and optimized turbocharger RBS with faster development cycle times and increased reliability.


2021 ◽  
pp. 109963622110219
Author(s):  
Vu Thi Thuy Anh ◽  
Vu Dinh Quang ◽  
Nguyen Dinh Duc ◽  
Pham Ngoc Thinh

By using the first order shear deformation theory (FSTD), this paper presents the results of the nonlinear dynamic behavior and natural frequencies of sandwich plate supported by elastic foundations in thermal environment and subjected to mechanical load and blast loading. This work takes advantage of the sandwich plate configuration with three layers: graphene platelet –reinforced composite (GPL) layer – auxetic layer – FGM layer, to analyze the dynamic and vibration problem, in which the auxetic core layer has a negative Poisson's ratios and the FGM layer is reinforced by stiffeners made of full metal or full ceramic depending on a situation of stiffeners at the metal-rich or ceramic-rich side of the plate respectively. Corresponding to the combination of material layers, the mechanical quantities of the problem are processed and calculated to suit the structure and reinforcement conditions. Numerical results are provided to explore the influences of geometrical parameters, elastic foundation parameters, GPL volume fraction, blast and mechanical loads on the nonlinear dynamic behavior and vibration of sandwich plate resting on elastic foundation and in thermal environment. In addition, the study is not only assumed that the material properties depend on environment temperature variation, but also considered the thermal stresses in the stiffeners, as well as considered the effect of imperfections in the original shape of the structure.


Sign in / Sign up

Export Citation Format

Share Document