Greater Sun Salutation Frequency and Standing Time Predict Increased Rate of Perceived Exertion across Multiple Yoga Styles: A Cross-sectional Yoga Instructor Survey

2021 ◽  
Vol 102 (10) ◽  
pp. e103
Author(s):  
Donald Lein ◽  
Harshvardhan Singh ◽  
John Lowman ◽  
SoJung Kim
2004 ◽  
Vol 18 (4) ◽  
pp. 30-31
Author(s):  
Konrad J. Dias ◽  
Kathleen Amos ◽  
Jennifer Koons ◽  
Patrick Martchink ◽  
Jared Smiddy ◽  
...  

Folia Medica ◽  
2021 ◽  
Vol 63 (4) ◽  
pp. 502-510
Author(s):  
Oyéné Kossi ◽  
Justine Lacroix ◽  
Maxence Compagnat ◽  
Jean Christophe Daviet ◽  
Stéphane Mandigout

Aim: To test the validity of Borg’s 6–20 rating of perceived exertion scale in assessing the exertion intensity over a multi-activity session in young and older adults.Materials and methods: This cross-sectional study included 56 healthy participants. All participants underwent a single session of activities including working on a computer, treadmill walking, biking, and treadmill running. Results: Results showed a non-significant correlation between the overall perceived exertion and energy expenditure in young people (Rho=−0.05, p=0.75) and in older adults (Rho=−0.05, p=0.78) for the whole session. However, results showed that older adults perceived significantly higher exertion compared to young people while working on a computer, walking and running, whereas they presented lower energy expenditure while resting and working on a computer. Conclusions: Combining the perceived exertion method with other commonly used methods to estimate exercise intensity would be recommended for older adults.


2021 ◽  
Vol 28 (3) ◽  
pp. 267-275
Author(s):  
Mariana Kalazich-Rosales ◽  
Camila Mautner-Molina ◽  
Cecilia König-Araya ◽  
Francisca Fuentes-Leal ◽  
Carlos Cárcamo-Ibaceta ◽  
...  

ABSTRACT The six-minute walk test (6MWT) is widely used to measure functional capacity in special populations. However, the factors associated with its performance in candidates for bariatric surgery are unclear. Therefore, this study aimed to investigate the influence of anthropometric and physiological factors in the 6MWT performance in bariatric surgery candidates. This cross-sectional study included 107 candidates for bariatric surgery. Anthropometric factors considered: gender, weight, height, body mass index (BMI), waist-to-hip, and waist-to-height ratios. Along with distance covered during 6MWT, physiological factors such as ratings of perceived exertion (RPE) and heart rate reserve percentage used (%HRR) were recorded. Among the 107 patients (mean age: 39.6 years), 83 volunteers were accepted to perform the 6MWT. No gender differences were observed in terms of distance covered, %HRR, and RPE during the 6MWT. Moreover, BMI and %HRR explained 21% of the 6MWT distance covered. Furthermore, participants with BMI ≤41.5 kg/m2 walked ~50 meters more than their peers above this level (p=0.05). Interestingly, heart rate increase during the 6MWT was lower than described for healthy populations. BMI and %HRR partially explain the variability of the 6MWT performance in bariatric surgery candidates.


Author(s):  
James R. Mckee ◽  
Bradley A. Wall ◽  
Jeremiah J. Peiffer

Purpose: To examine the influence of temporal location of high-intensity interval training (HIIT) within a cycling session on the time spent ≥90% of maximal oxygen consumption and physiological and perceptual responses. Methods: In a randomized, crossover design, 16 trained cyclists (male, n = 13 and female, n = 3) completed three 90-minute cycling sessions with HIIT placed at the beginning, middle, or end of the session (13, 36, and 69 min, respectively). Intervals consisted of three 3-minute efforts at 90% of the power output associated with maximal oxygen consumption interspersed with 3 minutes of recovery. Oxygen consumption, minute ventilation, respiratory rate, and heart rate were recorded continuously during work intervals. Rate of perceived exertion was recorded at the end of work intervals, and sessional rate of perceived exertion was collected 20 minutes after session completion. Results: No differences were observed for mean oxygen consumption (P = .479) or time spent ≥90% maximal oxygen consumption (P = .753) between condition. The mean rate of perceived exertion of all intervals were greater in the Middle (P < .01, effect size = 0.83) and End (P < .05, effect size = 0.75) compared with Beginning conditions. Mean minute ventilation was greater in the End compared with Beginning condition (P = .015, effect size = 0.63). However, no differences in mean respiratory rate were observed between conditions (P = .297). Conclusions: Temporal location of HIIT has no impact on oxygen consumption or cardiovascular stress within a cycling session. However, HIIT performed later in the session resulted in higher ventilation, which may indicate the need for greater anaerobic contribution to these intervals.


Author(s):  
Nicola Giovanelli ◽  
Lara Mari ◽  
Asia Patini ◽  
Stefano Lazzer

Purpose: To compare energetics and spatiotemporal parameters of steep uphill pole walking on a treadmill and overground. Methods: First, the authors evaluated 6 male trail runners during an incremental graded test on a treadmill. Then, they performed a maximal overground test with poles and an overground test at 80% (OG80) of vertical velocity of maximal overground test with poles on an uphill mountain path (length = 1.3 km, elevation gain = 433 m). Finally, they covered the same elevation gain using poles on a customized treadmill at the average vertical velocity of the OG80. During all the tests, the authors measured oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, and rate of perceived exertion. Results: Treadmills required lower metabolic power (15.3 [1.9] vs 16.6 [2.0] W/kg, P = .002) and vertical cost of transport (49.6 [2.7] vs 53.7 [2.1] J/kg·m, P < .001) compared with OG80. Also, oxygen uptake was lower on a treadmill (41.7 [5.0] vs 46.2 [5.0] mL/kg·min, P = .001). Conversely, respiratory quotient was higher on TR80 compared with OG80 (0.98 [0.02] vs 0.89 [0.04], P = .032). In addition, rate of perceived exertion was higher on a treadmill and increased with elevation (P < .001). The authors did not detect any differences in other physiological measurements or in spatiotemporal parameters. Conclusions: Researchers, coaches, and athletes should be aware that steep treadmill pole walking requires lower energy consumption but same heart rate and rate of perceived exertion than overground pole walking at the same average intensity.


2020 ◽  
pp. 1-5
Author(s):  
Megan Wagner ◽  
Kevin D. Dames

Context: Bodyweight-supporting treadmills are popular rehabilitation tools for athletes recovering from impact-related injuries because they reduce ground reaction forces during running. However, the overall metabolic demand of a given running speed is also reduced, meaning athletes who return to competition after using such a device in rehabilitation may not be as fit as they had been prior to their injury. Objective: To explore the metabolic effects of adding incline during bodyweight-supported treadmill running. Design: Cross-sectional. Setting: Research laboratory. Participants: Fourteen apparently healthy, recreational runners (6 females and 8 males; 21 [3] y, 1.71 [0.08] m, 63.11 [6.86] kg). Interventions: The participants performed steady-state running trials on a bodyweight-supporting treadmill at 8.5 mph. The control condition was no incline and no bodyweight support. All experimental conditions were at 30% bodyweight support. The participants began the sequence of experimental conditions at 0% incline; this increased to 1%, and from there on, 2% incline increases were introduced until a 15% grade was reached. Repeated-measures analysis of variance was used to compare all bodyweight-support conditions against the control condition. Main Outcome Measures: Oxygen consumption, heart rate, and rating of perceived exertion. Results: Level running with 30% bodyweight support reduced oxygen consumption by 21.6% (P < .001) and heart rate by 12.0% (P < .001) compared with the control. Each 2% increase in incline with bodyweight support increased oxygen consumption by 6.4% and heart rate by 3.2% on average. A 7% incline elicited similar physiological measures as the unsupported, level condition. However, the perceived intensity of this incline with bodyweight support was greater than the unsupported condition (P < .001). Conclusions: Athletes can maintain training intensity while running on a bodyweight-supporting treadmill by introducing incline. Rehabilitation programs should rely on quantitative rather than qualitative data to drive exercise prescription in this modality.


2019 ◽  
Vol 9 (23) ◽  
pp. 5174
Author(s):  
Alessio Rossi ◽  
Enrico Perri ◽  
Luca Pappalardo ◽  
Paolo Cintia ◽  
F. Iaia

The use of machine learning (ML) in soccer allows for the management of a large amount of data deriving from the monitoring of sessions and matches. Although the rate of perceived exertion (RPE), training load (S-RPE), and global position system (GPS) are standard methodologies used in team sports to assess the internal and external workload; how the external workload affects RPE and S-RPE remains still unclear. This study explores the relationship between both RPE and S-RPE and the training workload through ML. Data were recorded from 22 elite soccer players, in 160 training sessions and 35 matches during the 2015/2016 season, by using GPS tracking technology. A feature selection process was applied to understand which workload features influence RPE and S-RPE the most. Our results show that the training workloads performed in the previous week have a strong effect on perceived exertion and training load. On the other hand, the analysis of our predictions shows higher accuracy for medium RPE and S-RPE values compared with the extremes. These results provide further evidence of the usefulness of ML as a support to athletic trainers and coaches in understanding the relationship between training load and individual-response in team sports.


Sign in / Sign up

Export Citation Format

Share Document