Energetics and Mechanics of Steep Treadmill Versus Overground Pole Walking: A Pilot Study

Author(s):  
Nicola Giovanelli ◽  
Lara Mari ◽  
Asia Patini ◽  
Stefano Lazzer

Purpose: To compare energetics and spatiotemporal parameters of steep uphill pole walking on a treadmill and overground. Methods: First, the authors evaluated 6 male trail runners during an incremental graded test on a treadmill. Then, they performed a maximal overground test with poles and an overground test at 80% (OG80) of vertical velocity of maximal overground test with poles on an uphill mountain path (length = 1.3 km, elevation gain = 433 m). Finally, they covered the same elevation gain using poles on a customized treadmill at the average vertical velocity of the OG80. During all the tests, the authors measured oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, and rate of perceived exertion. Results: Treadmills required lower metabolic power (15.3 [1.9] vs 16.6 [2.0] W/kg, P = .002) and vertical cost of transport (49.6 [2.7] vs 53.7 [2.1] J/kg·m, P < .001) compared with OG80. Also, oxygen uptake was lower on a treadmill (41.7 [5.0] vs 46.2 [5.0] mL/kg·min, P = .001). Conversely, respiratory quotient was higher on TR80 compared with OG80 (0.98 [0.02] vs 0.89 [0.04], P = .032). In addition, rate of perceived exertion was higher on a treadmill and increased with elevation (P < .001). The authors did not detect any differences in other physiological measurements or in spatiotemporal parameters. Conclusions: Researchers, coaches, and athletes should be aware that steep treadmill pole walking requires lower energy consumption but same heart rate and rate of perceived exertion than overground pole walking at the same average intensity.

2021 ◽  
pp. 1-10
Author(s):  
Jeanette M. Ricci ◽  
Katharine D. Currie ◽  
Todd A. Astorino ◽  
Karin A. Pfeiffer

Girls’ acute responses to group-based high-intensity interval exercise (HIIE) are not well characterized. Purpose: To compare acute responses to treadmill-based HIIE (TM) and body-weight resistance exercise circuit (CIRC) and to CIRC performed in a small-group setting (group CIRC). Method: Nineteen girls (9.1 [1.1] y) completed exercise testing on a TM to determine peak oxygen uptake, peak heart rate (HRpeak), and maximal aerobic speed. The TM involved eight 30-second sprints at 100% maximal aerobic speed. The CIRC consisted of 8 exercises of maximal repetitions performed for 30 seconds. Each exercise bout was followed by 30 seconds of active recovery. The blood lactate concentration was assessed preexercise and postexercise. The ratings of perceived exertion, affective valence, and enjoyment were recorded at preexercise, Intervals 3 and 6, and postexercise. Results: The mean heart rate was higher during group CIRC (92% [7%] HRpeak) than CIRC (86% [7%] HRpeak) and TM (85% [4%] HRpeak) ( = .49). The mean oxygen uptake equaled 76% (11%) of the peak oxygen uptake for CIRC and did not differ from TM (d = 0.02). The CIRC elicited a greater postexercise blood lactate concentration versus TM (5.8 [1.7] vs 1.4 [0.4] mM, d = 3.61). The perceptual responses were similar among conditions (P > .05), and only the rating of perceived exertion increased during exercise ( = .78). Conclusion: Whether performed individually or in a small group, CIRC represents HIIE and may be a feasible alternative to running-based HIIE.


2014 ◽  
Vol 9 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Dennis-Peter Born ◽  
Christoph Zinner ◽  
Britta Herlitz ◽  
Katharina Richter ◽  
Hans-Christer Holmberg ◽  
...  

Purpose:The current investigation assessed tissue oxygenation and local blood volume in both vastus lateralis muscles during 3000-m race simulations in elite speed skaters on ice and the effects of leg compression on physiological, perceptual, and performance measures.Methods:Ten (6 female) elite ice speed skaters completed 2 on-ice trials with and without leg compression. Tissue oxygenation and local blood volume in both vastus lateralis muscles were assessed with near-infrared spectroscopy. Continuous measures of oxygen uptake, ventilation, heart rate, and velocity were conducted throughout the race simulations, as well as blood lactate concentration and ratings of perceived exertion before and after the trials. In addition, lap times were assessed.Results:The investigation of tissue oxygenation in both vastus lateralis muscles revealed an asymmetry (P < .00; effect size = 1.81) throughout the 3000-m race simulation. The application of leg compression did not affect oxygenation asymmetry (smallest P = .99; largest effect size = 0.31) or local blood volume (P = .33; 0.95). Lap times (P = .88; 0.43), velocity (P = .24; 0.84), oxygen uptake (P = .79; 0.10), ventilation (P = .11; 0.59), heart rate (P = .21; 0.89), blood lactate concentration (P = .82; 0.59), and ratings of perceived exertion (P = .19; 1.01) were also unaffected by the different types of clothing.Conclusion:Elite ice speed skaters show an asymmetry in tissue oxygenation of both vastus lateralis muscles during 3000-m events remaining during the long gliding phases along the straight sections of the track. Based on the data, the authors conclude that there are no performance-enhancing benefits from wearing leg compression under a normal racing suit.


2011 ◽  
Vol 29A (Special-Issue) ◽  
pp. 59-68 ◽  
Author(s):  
Roxana Brasil ◽  
Ana Barreto ◽  
Leandro Nogueira ◽  
Edil Santos ◽  
Jefferson Novaes ◽  
...  

Comparison of Physiological and Perceptual Responses Between Continuous and Intermittent CyclingThe present study tested the hypothesis that the exercise protocol (continuous vs. intermittent) would affect the physiological response and the perception of effort during aquatic cycling. Each protocol was divided on four stages. Heart rate, arterial blood pressure, blood lactate concentration, central and peripheral rate of perceived exertion were collected in both protocols in aquatic cycling in 10 women (values are mean ± SD): age=32.8 ± 4.8 years; height=1.62 ± 0.05 cm; body mass=61.60 ± 5.19 kg; estimated body fat=27.13 ± 4.92%. Protocols were compared through two way ANOVA with Scheffé's post-hoc test and the test of Mann- Whitney for rate of perceived exertion with α=0.05. No systematic and consistent differences in heart rate, arterial blood pressure, double product and blood lactate concentration were found between protocols. On the other hand, central rate of perceived exertion was significantly higher at stage four during continuous protocol compared with intermittent protocol (p=0.01), while the peripheral rate of perceived exertion presented higher values at stages three (p=0.02) and four (p=0.00) in the continuous protocol when compared to the results found in intermittent protocol. These findings suggest that although the aquatic cycling induces similar physiologic demands in both protocols, the rate of perceived exertion may vary according to the continuous vs. intermittent nature of the exercise.


2016 ◽  
Vol 22 ◽  
pp. 20 ◽  
Author(s):  
Veronika Myran Wee ◽  
Erna Von Heimburg ◽  
Roland Van den Tillaar

The aim of this study was to compare perceptual and physiological variables between running on three different modalities — an indoor athletics track, a motorized treadmill, and a non-motorized curved treadmill — for 1000 m at three different velocities. Ten male athletes (age 24±3 years, body mass 69.8±6.91 kg, height 1.80±0.06 m, VO2peak 69.0±6.70 ml/kg/ min) conducted three 1000 m laps at increasing velocity on three different running modalities. The athletes had a 3-minute recovery between each lap, where the rate of perceived exertion (RPE) was registered and the blood lactate concentration and heart rate were measured. Oxygen uptake was measured using a portable metabolic analyser. The physiological (oxygen uptake, heart rate, and blood lactate concentration) and perceptual (RPE) variables were higher when running on a non-motorized curved treadmill compared with running on the track or a motorized treadmill. No differences were found between running on a motorized treadmill and the track except for the RPE, which was lower when running on the track compared with the motorized treadmill. Running on a non-motorized curved treadmill at three different velocities results in a higher oxygen uptake (37%) and heart rate (22%) and is subjectively much harder than running on a track or a motorized treadmill at the same velocities. The difference is around 4 km/h when comparing the physiological and perceptual responses. Thus, when performing training sessions on a non-motorized curved treadmill, subjects should subtract 4 km/h from their regular pace on a track or motorized treadmill to get the same response considering oxygen uptake, heart rate, RPE and blood lactate concentration.


2021 ◽  
Vol 77 (1) ◽  
pp. 117-123
Author(s):  
Christoph Zinner ◽  
Manuel Matzka ◽  
Sebastian Krumscheid ◽  
Hans-Christer Holmberg ◽  
Billy Sperlich

Abstract This study was designed to assess systemic cardio-respiratory, metabolic and perceived responses to incremental arm cycling with concurrent electrical myostimulation (EMS). Eleven participants (24 ± 3 yrs; 182 ± 10 cm; 86 ± 16.8 kg) performed two incremental tests involving arm cycling until volitional exhaustion was reached with and without EMS of upper-body muscles. The peak power output was 10.1% lower during arm cycling with (128 ± 30 W) than without EMS (141 ± 25 W, p = 0.01; d = 0.47). In addition, the heart rate (2-9%), oxygen uptake (7-15%), blood lactate concentration (8-46%) and ratings of perceived exertion (4-14%) while performing submaximal arm cycling with EMS were all higher with than without EMS (all p < 0.05). Upon exhaustion, the heart rate, oxygen uptake, lactate concentration, and ratings of perceived exertion did not differ between the two conditions (all p > 0.05). In conclusion, arm cycling with EMS induced more pronounced cardio-respiratory, metabolic and perceived responses, especially during submaximal arm cycling. This form of exercise with stimulation might be beneficial for a variety of athletes competing in sports involving considerable generation of work by the upper body (e.g., kayaking, cross-country skiing, swimming, rowing and various parasports).


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


2021 ◽  
pp. 003151252110052
Author(s):  
Jhonny K. F. da Silva ◽  
Bruna B. Sotomaior ◽  
Carolina F. Carneiro ◽  
Patrick Rodrigues ◽  
Lee Wharton ◽  
...  

The purpose of this study was to verify the effectiveness of the rate of perceived exertion threshold (RPET) for predicting young competitive swimmers’ lactate threshold (LT) during incremental testing. We enrolled 13 male athletes ( M age = 16, SD = 0.6 years) in an incremental test protocol consisting of eight repetitions of a 100-meter crawl with 2-minute intervals between each repetition. We collected data for blood lactate concentration ([La]) and Borg scale rate of perceived exertion (RPE) at the end of each repetition. The results obtained were: M RPET = 4.98, SD = 1.12 arbitrary units (A.U.) and M lactate threshold = 4.24, SD = 1.12 mmol.L−1, with [La] and RPE identified by the maximal deviation (Dmax) method without a significant difference ( p > 0.05) and large correlations between DmaxLa and DmaxRPE at variables for time (r = 0.64), velocity (r = 0.67) and percentage of personal best time (PB) (r = 0.60). These results suggest that RPET is a good predictor of LT in young competitive swimmers.


2020 ◽  
Vol 15 (7) ◽  
pp. 982-989
Author(s):  
Arthur H. Bossi ◽  
Cristian Mesquida ◽  
Louis Passfield ◽  
Bent R. Rønnestad ◽  
James G. Hopker

Purpose: Maximal oxygen uptake () is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. Methods: Fourteen cyclists ( 69.2 [6.6] mL·kg−1·min−1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. Results: Cyclists spent more time at during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation () was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with (r = .36, P = .002). Conclusions: In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.


Sign in / Sign up

Export Citation Format

Share Document