Inhibition of the sweet taste receptor with lactisole attenuates post-prandial glucose levels and increases glucagon-like peptide levels in normal weight men

Appetite ◽  
2010 ◽  
Vol 54 (3) ◽  
pp. 678
Author(s):  
K.L. Teff ◽  
G. Emmanuel ◽  
R. Margolskee
2013 ◽  
Vol 304 (8) ◽  
pp. G708-G714 ◽  
Author(s):  
Shingo Sato ◽  
Ryota Hokari ◽  
Chie Kurihara ◽  
Hirokazu Sato ◽  
Kazuyuki Narimatsu ◽  
...  

Glucagon-like peptide-2 (GLP-2) is a potent intestinal growth factor derived from enteroendocrine L cells. Although food intake is known to increase GLP-2 secretion, its regulatory mechanisms are largely unknown as a result of its very short half-life in venules. The aims of this study were to compare the effects of luminal nutrients on the stimulation of GLP-2 secretion in vivo using lymph samples and to clarify the involvement of the sweet taste receptor in this process in vitro. Lymph samples were collected from the thoracic duct after bolus administration of dietary lipids or sweetening agents into the duodenum of rats. Human enteroendocrine NCI-H716 cells were also used to compare the effects of various nutrients on GLP-2 secretion. GLP-2 concentrations were measured by ELISA in vivo and in vitro. GLP-2 secretion was enhanced by polyunsaturated fatty acid- and monounsaturated fatty acid-rich dietary oils, dietary carbohydrates, and some kinds of sweeteners in rats; this effect was reproduced in NCI-H716 cells using α-linolenic acid (αLA), glucose, and sweeteners. GLP-2 secretion induced by sweetening agents was inhibited by lactisole, a sweetness-antagonizing inhibitor of T1R3. In contrast, lactisole was unable to inhibit GLP-2 secretion induced by αLA alone. Our results suggested that fatty acid- and sweetener-induced GLP-2 secretion may be mediated by two different pathways, with the sweet taste receptor involved in the regulation of the latter.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiudao Song ◽  
Fei Wang ◽  
Heng Xu ◽  
Guoqiang Liang ◽  
Liang Zhou ◽  
...  

3-Deoxyglucosone (3DG) is derived from D-glucose during food processing and storage and under physiological conditions. We reported that glucagon-like peptide-1 (GLP-1) secretion in response to an oral glucose load in vivo and high-glucose stimulation in vitro was decreased by acute 3DG administration. In this study, we determined the acute effect of 3DG on GLP-1 secretion under basal conditions and investigated the possible mechanisms. Normal fasting rats were given a single acute intragastric administration of 50 mg/kg 3DG. Plasma basal GLP-1 levels and duodenum 3DG content and sweet taste receptor expression were measured. STC-1 cells were acutely exposed to 3DG (80, 300, and 1000 ng/ml) for 1 h under basal conditions (5.6 mM glucose), and GLP-1 secretion, intracellular concentrations of cyclic adenosine monophosphate (cAMP) and Ca2+, and molecular expression of STR signaling pathway were measured. Under the fasted state, plasma GLP-1 levels, duodenum 3DG content, and duodenum STR expression were elevated in 3DG-treated rats. GLP-1 secretion was increased in 3DG-treated cells under either 5.6 mM glucose or glucose-free conditions. 3DG-induced acute GLP-1 secretion from STC-1 cells under 5.6 mM glucose was inhibited in the presence of the STR inhibitor lactisole, which was consistent with the observation under glucose-free conditions. Moreover, acute exposure to 3DG increased the protein expression of TAS1R2 and TAS1R3 under either 5.6 mM glucose or glucose-free conditions, with affecting other components of STR signaling pathway, including the upregulation of transient receptor potential channel type M5 TRPM5 and the increment of intracellular Ca2+ concentration. In summary, the glucose-free condition was used to first demonstrate the involvement of STR in 3DG-induced acute GLP-1 secretion. These results first showed that acute 3DG administration induces basal GLP-1 secretion in part through upregulation of STR expression.


1982 ◽  
Vol 175 (4) ◽  
pp. 266-268 ◽  
Author(s):  
Jean-Marie Tinti ◽  
Claude Nofre ◽  
Anne-Marie Peytavi

Sign in / Sign up

Export Citation Format

Share Document