scholarly journals Examining the neural correlates of goal priming with the NeuroShop, a novel virtual reality fMRI paradigm

Appetite ◽  
2021 ◽  
pp. 105901
Author(s):  
L.N. van der Laan ◽  
E.K. Papies ◽  
A. Ly ◽  
P.A.M. Smeets
2013 ◽  
Vol 26 (3) ◽  
pp. 269-284 ◽  
Author(s):  
M. Clemente ◽  
B. Rey ◽  
A. Rodriguez-Pujadas ◽  
A. Barros-Loscertales ◽  
R. M. Banos ◽  
...  

2020 ◽  
Vol 3 ◽  
Author(s):  
Allison M. Detloff ◽  
Ahmad R. Hariri ◽  
Timothy J. Strauman

Abstract Regulatory focus theory (RFT) postulates two cognitive-motivational systems for personal goal pursuit: the promotion system, which is associated with ideal goals (an individual’s hopes, dreams, and aspirations), and the prevention system, which is associated with ought goals (an individual’s duties, responsibilities, and obligations). The two systems have been studied extensively in behavioral research with reference to differences between promotion and prevention goal pursuit as well as the consequences of perceived attainment versus nonattainment within each system. However, no study has examined the neural correlates of each combination of goal domain and goal attainment status. We used a rapid masked idiographic goal priming paradigm and functional magnetic resonance imaging to present individually selected promotion and prevention goals, which participants had reported previously that they were close to attaining (“match”) or far from attaining (“mismatch”). Across the four priming conditions, significant activations were observed in bilateral insula (Brodmann area (BA) 13) and visual association cortex (BA 18/19). Promotion priming discriminantly engaged left prefrontal cortex (BA 9), whereas prevention priming discriminantly engaged right prefrontal cortex (BA 8/9). Activation in response to promotion goal priming was also correlated with an individual difference measure of perceived success in promotion goal attainment. Our findings extend the construct validity of RFT by showing that the two systems postulated by RFT, under conditions of both attainment and nonattainment, have shared and distinct neural correlates that interface logically with established network models of self-regulatory cognition.


CNS Spectrums ◽  
2006 ◽  
Vol 11 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Hunter G. Hoffman ◽  
Todd L. Richards ◽  
Aric R. Bills ◽  
Trevor Van Oostrom ◽  
Jeff Magula ◽  
...  

ABSTRACTExcessive pain during medical procedures, such as burn wound dressing changes, is a widespread medical problem and is especially challenging for children. This article describes the rationale behind virtual reality (VR) pain distraction, a new non-pharmacologic adjunctive analgesia, and gives a brief summary of empirical studies exploring whether VR reduces clinical procedural pain. Results indicate that patients using VR during painful medical procedures report large reductions in subjective pain. A neuroimaging study measuring the neural correlates of VR analgesia is described in detail. This functional magnetic resonance imaging pain study in healthy volunteers shows that the large drops in subjective pain ratings during VR are accompanied by large drops in pain-related brain activity. Together the clinical and laboratory studies provide converging evidence that VR distraction is a promising new non-pharmacologic pain control technique.


CNS Spectrums ◽  
2006 ◽  
Vol 11 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Kara N. Carvalho ◽  
Godfrey D. Pearlson ◽  
Robert S. Astur ◽  
Vince D. Calhoun

ABSTRACTIntroduction:Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving.Objective:We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center.Methods:Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA.Results:Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined.Conclusion:In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.


2021 ◽  
Author(s):  
Hojun Lee ◽  
JongKwan Choi ◽  
Dooyoung Jung ◽  
Ji-Won Hur ◽  
Chul-Hyun Cho

BACKGROUND Attempts to use virtual reality (VR) as a treatment for various psychiatric disorders have been made recently, and many researchers have identified the effects of VR in psychiatric disorders. Studies have reported that VR therapy is effective in social anxiety disorder (SAD). However, there is no prior study on the neural correlates of VR therapy in patients with SAD. OBJECTIVE The aim of this study is to find the neural correlates of VR therapy by evaluating the treatment effectiveness of VR in patients with SAD using portable functional near-infrared spectroscopy (fNIRS). METHODS Patients with SAD (n=28) were provided with 6 sessions of VR treatment that was developed for exposure to social situations with a recording system of each participant’s self-introduction in VR. After each VR treatment session, the first-person view (video 1) and third-person view (video 2) clips of the participant’s self-introduction were automatically generated. The functional activities of prefrontal regions were measured by fNIRS while watching videos 1 and 2 with a cognitive task, before and after whole VR treatment sessions, and after the first session of VR treatment. We compared the data of fNIRS between patients with SAD and healthy controls (HCs; n=27). RESULTS We found that reduction in activities of the right frontopolar prefrontal cortex (FPPFC) in HCs was greater than in the SAD group at baseline (<i>t</i>=–2.01, <i>P</i>=.049). Comparing the frontal cortex activation before and after VR treatment sessions in the SAD group showed significant differences in activities of the FPPFC (right: <i>t</i>=–2.93, <i>P</i><.001; left: <i>t</i>=–2.25, <i>P</i>=.03) and the orbitofrontal cortex (OFC) (right: <i>t</i>=–2.10, <i>P</i>=.045; left: <i>t</i>=–2.21, <i>P</i>=.04) while watching video 2. CONCLUSIONS Activities of the FPPFC and OFC were associated with symptom reduction after VR treatment for SAD. Our study findings might provide a clue to understanding the mechanisms underlying VR treatment for SAD. CLINICALTRIAL Clinical Research Information Service (CRIS) KCT0003854; https://tinyurl.com/559jp2kp


2020 ◽  
Author(s):  
Weston Fleming ◽  
Sean Jewell ◽  
Ben Engelhard ◽  
Daniela M. Witten ◽  
Ilana B. Witten

AbstractCalcium imaging has led to discoveries about neural correlates of behavior in subcortical neurons, including dopamine (DA) neurons. However, spike inference methods have not been tested in most populations of subcortical neurons. To address this gap, we simultaneously performed calcium imaging and electrophysiology in DA neurons in brain slices, and applied a recently developed spike inference algorithm to the GCaMP fluorescence. This revealed that individual spikes can be inferred accurately in this population. Next, we inferred spikes in vivo from calcium imaging from these neurons during Pavlovian conditioning, as well as during navigation in virtual reality. In both cases, we quantitatively recapitulated previous in vivo electrophysiological observations. Our work provides a validated approach to infer spikes from calcium imaging in DA neurons, and implies that aspects of both tonic and phasic spike patterns can be recovered.


2018 ◽  
Vol 89 (6) ◽  
pp. A10.3-A11 ◽  
Author(s):  
Elie Matar ◽  
James M Shine ◽  
Moran Gilat ◽  
Kaylena Ehgoetz-Martens ◽  
Phillip B Ward ◽  
...  

IntroductionFreezing of gait (FOG) in Parkinson’s disease (PD) is a disabling symptom of advanced PD and is frequently triggered upon passing through narrow spaces such as doorways.1 Despite being common, the mechanisms underlying this phenomenon are poorly understood. We have previously shown that increased footstep latency in a virtual reality (VR) environment is a surrogate measure of FOG.2 In this study we aimed to model doorway freezing utilising the VR paradigm in conjunction with functional magnetic resonance imaging (fMRI) to determine the neural correlates of this phenomenon.MethodsIn our study, nineteen patients who routinely experience FOG performed a previously validated VR gait paradigm3 where they used foot-pedals to navigate a series of doorways. Patients underwent testing randomised between both their ‘ON’ and ‘OFF’ medication states. Task performance in conjunction with blood oxygenation level dependent signal changes were compared within each patient.ResultsWe were able to reproduce the finding that patients in the OFF state demonstrated significantly longer ‘footstep’ latencies as they passed through a doorway in the VR environment compared to the ON state. As seen clinically with FOG this locomotive delay was primarily triggered by narrow doorways rather than wide doorways. fMRI analysis revealed that doorway-provoked footstep delay was associated with selective hypoactivation in the pre-supplementary motor area (pSMA) bilaterally. Task-based functional connectivity analyses showed that this delay was inversely correlated with the degree of functional connectivity between the pSMA and the subthalamic nucleus (STN) across both hemispheres. Furthermore, increased frequency of prolonged footstep latency was associated with increased connectivity between the bilateral STN.ConclusionThese findings suggest that the effect of environmental cues on triggering FOG reflects a degree of impaired processing within the pSMA and disrupted signalling between the pSMA and STN, thus implicating the ‘hyperdirect’ pathway in the generation of this phenomenon.References. Giladi N, Treves TA, Simon ES, Shabtai H, Orlov Y, Kandinov B, Paleacu D, Korczyn AD. Freezing of gait in patients with advanced Parkinson’s disease. J Neural Transm (Vienna)2001;108:53–61.. Matar E, Shine JM, Naismith SL, Lewis SJ.Virtual realitywalking and dopamine: opening new doorways to understanding freezing of gait in Parkinson’s disease. J Neurol Sci 2014;344:182–5.. Shine JM, Matar E, Bolitho SJ, Dilda V, Morris TR, Naismith SL, Moore ST, Lewis SJ. Modelling freezing of gait in Parkinson’s disease with a virtual reality paradigm. Gait Posture2013;38:104–8.


2020 ◽  
Vol 32 (8) ◽  
pp. 1438-1454
Author(s):  
Gang Li ◽  
Joaquin A. Anguera ◽  
Samirah V. Javed ◽  
Muḥammad Adeel Khan ◽  
Guoxing Wang ◽  
...  

Some evidence suggests that experiencing a given scenario using virtual reality (VR) may engage greater attentional resources than experiencing the same scenario on a 2D computer monitor. However, the underlying neural processes associated with these VR-related effects, especially those pertaining to current consumer-friendly head-mounted displays of virtual reality (HMD-VR), remain unclear. Here, two experiments were conducted to compare task performance and EEG-based neural metrics captured during a perceptual discrimination task presented on two different viewing platforms. Forty participants (20–25 years old) completed this task using both an HMD-VR and traditional computer monitor in a within-group, randomized design. Although Experiment I ( n = 20) was solely behavioral in design, Experiment II ( n = 20) utilized combined EEG recordings to interrogate the neural correlates underlying potential performance differences across platforms. These experiments revealed that (1) there was no significant difference in the amount of arousal measured between platforms and (2) selective attention abilities in HMD-VR environment were enhanced from both a behavioral and neural perspective. These findings suggest that the allocation of attentional resources in HMD-VR may be superior to approaches more typically used to assess these abilities (e.g., desktop/laptop/tablet computers with 2D screens).


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252345
Author(s):  
Weston Fleming ◽  
Sean Jewell ◽  
Ben Engelhard ◽  
Daniela M. Witten ◽  
Ilana B. Witten

Calcium imaging has led to discoveries about neural correlates of behavior in subcortical neurons, including dopamine (DA) neurons. However, spike inference methods have not been tested in most populations of subcortical neurons. To address this gap, we simultaneously performed calcium imaging and electrophysiology in DA neurons in brain slices and applied a recently developed spike inference algorithm to the GCaMP fluorescence. This revealed that individual spikes can be inferred accurately in this population. Next, we inferred spikes in vivo from calcium imaging from these neurons during Pavlovian conditioning, as well as during navigation in virtual reality. In both cases, we quantitatively recapitulated previous in vivo electrophysiological observations. Our work provides a validated approach to infer spikes from calcium imaging in DA neurons and implies that aspects of both tonic and phasic spike patterns can be recovered.


Sign in / Sign up

Export Citation Format

Share Document