Characterization of a thermoelectric cooler based thermal management system under different operating conditions

2013 ◽  
Vol 50 (1) ◽  
pp. 652-659 ◽  
Author(s):  
M.K. Russel ◽  
D. Ewing ◽  
C.Y. Ching
Author(s):  
Sanggyu Kang ◽  
Kyoungdoug Min

Water and thermal management are crucial factors in determining the performance of PEMFC for automotive application. In order to investigate the effect of cell humidity and temperature on the performance of PEMFC, a dynamic model of a PEMFC system for automotive application has been developed by using Matlab/Simulink®. The model is composed of a PEM unit cell, membrane humidifier, and thermal management system (TMS). At first, fuel and air are well hydrated by the shell and tube humidifier, then humidified fuel and air flow into the PEMFC for electrochemical reaction. PEMFC temperature was maintained at a constant level by the thermal management system. The active area of PEM model is 240 cm2. The cell was discretized into several control volumes in the through-plane to resolve energy balance and species diffusion. The membrane humidifier model is also discretized into three control volumes in the through-plane to resolve the mass conservation and energy balance. Fuel and air are hydrated by the diffusion of the water through the membrane. The thermal management system consists of radiator, fan and pump. De-ionized water cools down the temperature of PEMFC. In order to validate the model, the model was compared with a corresponding experiment. Comparison shows that simulation results are in good agreement with experiments. And the dynamic response of PEMFC with regard to the change of current was also investigated. The model is useful to elucidate the relationships between operating conditions such as air relative humidity, temperature, etc. It is expected that this dynamic modeling of PEMFC system can contribute to the design optimization of PEM fuel cell system for vehicle application.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012120
Author(s):  
R H Kurmaev ◽  
A A Umnitsyn

Abstract This article presents the experience of conducting experimental studies of the thermal management system (TMS) intended for the traction electric drive of an electric vehicle, which has each of its wheels driven by an in-wheel motor, in the X-In-the-Loop environment. The paper describes the experimental bench of the thermal management system, which makes it possible to simulate the operating conditions of the high-voltage components of the traction drive of an electric vehicle from the point of view of thermal-hydraulic characteristics. A brief description of the mathematical model used in real-time calculations during both local and collaborative experimental studies is given. The process of collaborative testing of the TMS of high-voltage components of the traction drive of an electric vehicle, in the X-In-the-Loop environment, as well as the results, is demonstrated. A similar approach used in the development of TMS allows increasing the efficiency of the system developed, by optimizing the control algorithm for the executive devices of the TMS, reducing the weight, as well as the overall dimensions of the components, and conducting a detailed analysis of each component. It is also worth noting that the use of collaborative experimental research in the X-In-the-Loop environment will reduce the cost of the experiment, as well as, ultimately, the cost of the product, since with such an approach there is no need for a real test object for each company engaged in the development of one or another electric.


2008 ◽  
Author(s):  
Fidan S. Yalc¸ın ◽  
Cu¨neyt Sert ◽  
I˙lker Tarı

The thermal management system of a commercially available notebook computer is investigated by using a commercial finite volume Computational Fluid Dynamics (CFD) software. After taking the computer apart, all dimensions are measured and all major components are modeled as accurately as possible. Heat dissipation values and some characteristics of the components are obtained from the manufacturer’s specifications. Different heat dissipation paths utilized in the design are investigated. Two active fans and aluminum heat dissipation plates as well as the heat pipe system are modeled according to their exact specifications. Under different operating powers, adequacy of the existing thermal management system is observed. Average temperatures of the sides of the casing, the keyboard and the internal components are reported in the form of tables. Thermal resistance networks for five different operating conditions are obtained from the analysis of the CFD simulation results.


Author(s):  
Peyton Frick ◽  
John Wagner ◽  
Parikshit Mehta

The performance of engine cooling systems can be improved by replacing the traditional mechanical driven radiator fan and water pump assemblies with computer controlled components. The power requirements for electric servo-motors increase with larger cooling demands which necessitate larger motors and/or a distributed configuration. One solution may be the use of hydraulic-based components due to their high power density and compact size. This paper investigates a thermal management system that features a computer controlled hydraulic actuated automotive fan and water pump. A mathematical model was derived for the hydraulic and thermal system components. To experimentally study the concept, a hydraulic driven fan and coolant pump were integrated with electric immersion heaters and radiator to emulate a vehicle cooling system. The dynamic model exhibited a strong correlation with the experimental test data. For a series of operating profiles, the servo-solenoid proportional control valves successfully tracked prescribed temperature set points to demonstrate that a hydraulic cooling system can maintain engine operating conditions.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 841
Author(s):  
Chuanwei Zhang ◽  
Zhan Xia ◽  
Bin Wang ◽  
Huaibin Gao ◽  
Shangrui Chen ◽  
...  

The temperature of electric vehicle batteries needs to be controlled through a thermal management system to ensure working performance, service life, and safety. In this paper, TAFEL-LAE895 100Ah ternary Li-ion batteries were used, and discharging experiments at different rates were conducted to study the surface temperature increasing characteristics of the battery. To dissipate heat, heat pipes with high thermal conductivity were used to accelerate dissipating heat on the surface of the battery. We found that the heat pipe was sufficient to keep the battery temperature within the desired range with a midlevel discharge rate. For further improvement, an additional thermoelectric cooler was needed for a high discharge rate. Simulations were completed with a battery management system based on a heat pipe and with a combined heat pipe and thermoelectric cooler, and the results were in line with the experimental results. The findings show that the combined system can effectively reduce the surface temperature of a battery within the full range of discharge rates expected in the battery used.


2022 ◽  
Author(s):  
Pedro J. Llanos ◽  
Vijay Vishal Duraisamy ◽  
Nikita L. Amberkar ◽  
Justin Nafziger ◽  
Cynthia Stockton

Sign in / Sign up

Export Citation Format

Share Document