Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers

2019 ◽  
Vol 156 ◽  
pp. 494-505 ◽  
Author(s):  
M.E. Nakhchi ◽  
J.A. Esfahani
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Young-Gil Park ◽  
Anthony M. Jacobi

The air-side thermal-hydraulic performance of flat-tube aluminum heat exchangers is studied experimentally for conditions typical to air-conditioning applications, for heat exchangers constructed with serpentine louvered, wavy, and plain fins. Using a closed-loop calorimetric wind tunnel, heat transfer and pressure drop are measured at air face velocities from 0.5 m/s to 2.8 m/s for dry- and wet-surface conditions. Parametric effects related to geometry and operating conditions on heat transfer and friction performance of the heat exchangers are explored. Significant differences in the effect of geometrical parameters are found for dry and wet conditions. For the louver-fin geometry, using a combined database from the present and the previous studies, empirical curve-fits for the Colburn j- and f-factors are developed in terms of a wet-surface multiplier. The wet-surface multiplier correlations fit the present database with rms relative residuals of 21.1% and 24.4% for j and f multipliers, respectively. Alternatively, stand-alone Colburn j and f correlations give rms relative residuals of 22.7% and 29.1%, respectively.


1997 ◽  
Vol 119 (2) ◽  
pp. 348-356 ◽  
Author(s):  
J. L. Hoke ◽  
A. M. Clausing ◽  
T. D. Swofford

An experimental investigation of the air-side convective heat transfer from wire-on-tube heat exchangers is described. The study is motivated by the desire to predict the performance, in a forced flow, of the steel wire-on-tube condensers used in most refrigerators. Previous investigations of wire-on-tube heat exchangers in a forced flow have not been reported in the literature. The many geometrical parameters (wire diameter, tube diameter, wire pitch, tube pitch, etc.), the complex conductive paths in the heat exchanger, and the importance of buoyant forces in a portion of the velocity regime of interest make the study a formidable one. A key to the successful correlation of the experimental results is a definition of the convective heat transfer coefficient, hw, that accounts for the temperature gradients in the wires as well as the vast difference in the two key characteristic lengths—the tube and wire diameters. Although this definition results in the need to solve a transcendental equation in order to obtain hw from the experimental data, the use of the resulting empirical correlation is straightforward. The complex influence of the mixed convection regime on the heat transfer from wire-on-tube heat exchangers is shown, as well as the effects of air velocity and the angle of attack. The study covers a velocity range of 0 to 2 m/s (the Reynolds number based on wire diameter extends to 200) and angles of attack varying from 0 deg (horizontal coils) to ±90 deg. Heat transfer data from seven different wire-on-tube heat exchangers are correlated so that 95 percent of the data below a Richardson number of 0.004, based on the wire diameter, lie within ±16.7 percent of the proposed correlation.


Author(s):  
Ya-Ling He ◽  
Pan Chu ◽  
Wen-Quan Tao

In this paper, heat transfer enhancement and pressure loss penalty for fin-and-tube heat exchangers with rectangular winglet pairs (RWPs) were numerically investigated in a relatively low Reynolds number flow. The purpose of this study was to explore the fundamental mechanism between the local flow structure and the heat transfer augmentation. The RWPs were placed with a special orientation for the purpose of enhancement of heat transfer. The numerical study involved three-dimensional flow and conjugate heat transfer in the computational domain, which was set up to model the entire flow channel in the air flow direction. The effects of attack-angle of RWPs, row-number of RWPs and placement of RWPs on the heat transfer characteristics and flow structure were examined in detail. It was observed that the longitudinal vortices caused by RWPs and the impingement of RWPs-directed flow on the downstream tube were important reasons of heat transfer enhancement for fin-and-tube heat exchangers with RWPs. It was interesting to find that the pressure loss penalty of the fin-and-tube heat exchangers with RWPs could be reduced by altering the placement of the same number of RWPs from inline array to staggered array and simultaneously maintain the heat transfer enhancement level. The results showed that the rectangular winglet pairs (RWPs) can significantly improve the heat transfer performance of the fin-and-tube heat exchangers with a moderate pressure loss penalty.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
A. Tamayol ◽  
K. Hooman

Using a thermal resistance approach, forced convection heat transfer through metal foam heat exchangers is studied theoretically. The complex microstructure of metal foams is modeled as a matrix of interconnected solid ligaments forming simple cubic arrays of cylinders. The geometrical parameters are evaluated from existing correlations in the literature with the exception of ligament diameter which is calculated from a compact relationship offered in the present study. The proposed, simple but accurate, thermal resistance model considers: the conduction inside the solid ligaments, the interfacial convection heat transfer, and convection heat transfer to (or from) the solid bounding walls. The present model makes it possible to conduct a parametric study. Based on the generated results, it is observed that the heat transfer rate from the heated plate has a direct relationship with the foam pore per inch (PPI) and solidity. Furthermore, it is noted that increasing the height of the metal foam layer augments the overall heat transfer rate; however, the increment is not linear. Results obtained from the proposed model were successfully compared with experimental data found in the literature for rectangular and tubular metal foam heat exchangers.


Author(s):  
C-C Wang ◽  
Y-P Chang ◽  
K-Y Chi ◽  
Y-J Chang

Extensive experiments on the heat transfer and pressure drop characteristics of louvre finand-tube heat exchangers were carried out. In the present study, 14 samples of non-redirection louvre fin-and-tube heat exchangers with different geometrical parameters, including the number of tube row, fin pitch and tube size, were tested in a wind tunnel. Results are presented as plots of the Fanning friction factor f and the Colburn j factor against Reynolds number based on the tube collar diameter in the range of 300–8000.


Sign in / Sign up

Export Citation Format

Share Document