Coupled convection heat transfer of water in a double pipe heat exchanger at supercritical pressures: An experimental research

2019 ◽  
Vol 159 ◽  
pp. 113962 ◽  
Author(s):  
Qingqing Wang ◽  
Zichen Song ◽  
Yulong Zheng ◽  
Yongguang Yin ◽  
Lang Liu ◽  
...  
2013 ◽  
Vol 17 (5) ◽  
pp. 1437-1441
Author(s):  
Yin Liu ◽  
Jing Ma ◽  
Guang-Hui Zhou ◽  
Ren-Bo Guan

The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more than 35%, and the average heating efficiency increases more than 55%, compared with the ordinary air-source heat pump.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 716
Author(s):  
Saulius Pakalka ◽  
Kęstutis Valančius ◽  
Giedrė Streckienė

Latent heat thermal energy storage systems allow storing large amounts of energy in relatively small volumes. Phase change materials (PCMs) are used as a latent heat storage medium. However, low thermal conductivity of most PCMs results in long melting (charging) and solidification (discharging) processes. This study focuses on the PCM melting process in a fin-and-tube type copper heat exchanger. The aim of this study is to define analytically natural convection heat transfer coefficient and compare the results with experimental data. The study shows how the local heat transfer coefficient changes in different areas of the heat exchanger and how it is affected by the choice of characteristic length and boundary conditions. It has been determined that applying the calculation method of the natural convection occurring in the channel leads to results that are closer to the experiment. Using this method, the average values of the heat transfer coefficient (have) during the entire charging process was obtained 68 W/m2K, compared to the experimental result have = 61 W/m2K. This is beneficial in the predesign stage of PCM-based thermal energy storage units.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Muhammad Ishaq ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal ◽  
Ahmad Hassan

A DG-FEM based numerical investigation has been performed to explore the influence of the various geometric configurations on the thermal performance of the conjugate heat transfer analysis in the triangular finned double pipe heat exchanger. The computed results dictate that Nusselt number in general rises with values of the conductivity ratio of solid and fluid, for the specific configuration parameters considered here. However, the performance of these parameters shows strong influence on the conductivity ratio. Consequently, these parameters must be selected in consideration of the thermal resistance, for better design of heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document