Evaluation of flamelet-based combustion models for the use in a flameless burner under different operating conditions

2021 ◽  
Vol 183 ◽  
pp. 116190
Author(s):  
Markus Mayrhofer ◽  
Michael Koller ◽  
Peter Seemann ◽  
Rene Prieler ◽  
Christoph Hochenauer
Author(s):  
Antonio Andreini ◽  
Matteo Cerutti ◽  
Bruno Facchini ◽  
Luca Mangani

One of the driving requirements in gas turbine design is the combustion analysis. The reduction of exhaust pollutant emissions is in fact the main design constraint of modern gas turbine engines, requiring a detailed investigation of flame stabilization criteria and temperature distribution within combustion chamber. At the same time, the prediction of thermal loads on liner walls continues to represent a critical issue especially with diffusion flame combustors which are still widely used in aeroengines. To meet such requirement, design techniques have to take advantage also of the most recent CFD tools that have to supply advanced combustion models according to the specific application demand. Even if LES approach represents a very accurate approach for the analysis of reactive flows, RANS computation still represents a fundamental tool in industrial gas turbine development, thanks to its optimal tradeoff between accuracy and computational costs. This paper describes the development and the validation of both combustion and radiation models in a object-oriented RANS CFD code: several turbulent combustion models were considered, all based on a generalized presumed PDF flamelet approach, valid for premixed and non premixed flames. Concerning radiative heat transfer calculations, two directional models based on the P1-Approximation and the Finite Volume Method were treated. Accuracy and reliability of developed models have been proved by performing several computations on well known literature test-cases. Selected cases investigate several turbulent flame types and regimes allowing to prove code affordability in a wide range of possible gas turbine operating conditions.


Author(s):  
Wayne Strasser ◽  
George Chamoun

It is desired to keep the outer metal walls of a heat transfer medium (HTM) furnace warm enough to prevent corrosion. A computational study was carried out in order to assess the normal and lowest possible sheet metal temperatures. Various combustion models, radiation parameters, and operating conditions were considered. Field-measured values matched CFD results closely. It was found that the walls were sufficiently warm under all reasonable modeling approaches and conceivable operating circumstances.


Author(s):  
Federica Farisco ◽  
Philipp Notsch ◽  
Rene Prieler ◽  
Felix Greiffenhagen ◽  
Jakob Woisetschlaeger ◽  
...  

Abstract In modern gas turbines for power generation and future aircraft engines, the necessity to reduce NOx emissions led to the implementation of a premixed combustion technology under fuel-lean conditions. In the combustion chamber of these systems, extreme pressure amplitudes can occur due to the unsteady heat release, reducing component life time or causing unexpected shutdown events. In order to understand and predict these instabilities, an accurate knowledge of the combustion process is inevitable. This study, which was provided by numerical methods, such as Computational Fluid Dynamics (CFD) is based on a three-dimensional (3D) geometry representing a premixed swirl-stabilized methane-fired burner configuration with a known flow field in the vicinity of the burner and well defined operating conditions. Numerical simulations of the swirl-stabilized methane-fired burner have been carried out using the commercial code ANSYS Fluent. The main objective is to validate the performance of various combustion models with different complexity by comparing against experimental data. Experiments have been performed for the swirl-stabilized methane-fired burner applying different technologies. Velocity fluctuation measurements have been carried out and validated through several techniques, such as Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV). Laser Interferometric Vibrometry (LIV) provided information on heat release fluctuations and OH*-chemiluminescence measurements have been done to identify the position of the main reaction zone. During the first part of the CFD investigation, the cold flow has been simulated applying different turbulence models and the velocity flow field obtained in the experiments has been compared with the numerical results. As next, the study focuses on the numerical analysis of the thermo-chemical processes in the main reaction zone. Few combustion models have been investigated beginning from Eddy Dissipation Model (EDM) and proceeding with increased complexity investigating the Steady Flamelet Model (SLF) and Flamelet Generated Manifold (FGM). An evaluation of the velocity field and temperature profile has been performed for all models used in order to test the validity of the numerical approach for the chosen geometry. The best option for future investigations of gas turbines has been identified.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruggero Amaduzzi ◽  
Marco Ferrarotti ◽  
Alessandro Parente

In this present work, simulations of 20 kW furnace were carried out with hydrogen-enriched methane mixtures, to identify optimal geometrical configurations and operating conditions to operate in flameless combustion regime. The objective of this work is to show the advantages of flameless combustion for hydrogen-enriched fuels and the limits of current typical industrial designs for these mixtures. The performances of a semi-industrial combustion chamber equipped with a self-recuperative flameless burner are evaluated with increasing H2 concentrations. For highly H2-enriched mixtures, typical burners employed for methane appear to be inadequate to reach flameless conditions. In particular, for a typical coaxial injector configuration, an equimolar mixture of hydrogen and methane represents the limit for hydrogen enrichment. To achieve flameless conditions, different injector geometries and configuration were tested. Fuel dilution with CO2 and H2O was also investigated. Dilution slows the mixing process, consequently helping the transition to flameless conditions. CO2, and H2O are typical products of hydrogen generation processes, therefore their use in fuel dilution is convenient for industrial applications. Dilution thus allows the use of greater hydrogen percentages in the mixture.


Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
D.B. Darby ◽  
C. Warwick

The extended crystallographic defects introduced into some oxide catalysts under operating conditions may be a consequence and accommodation of the changes produced by the catalytic activity, rather than always being the origin of the reactivity. Operation without such defects has been established for the commercially important tellurium molybdate system. in addition it is clear that the point defect density and the electronic structure can both have a significant influence on the chemical properties and hence on the effectiveness (activity and selectivity) of the material as a catalyst. SEM/probe techniques more commonly applied to semiconductor materials, have been investigated to supplement the information obtained from in-situ environmental cell HVEM, ultra-high resolution structure imaging and more conventional AEM and EPMA chemical microanalysis.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Sign in / Sign up

Export Citation Format

Share Document