Corrosion and ion release behavior of Cu/Ti film prepared via physical vapor deposition in vitro as potential biomaterials for cardiovascular devices

2012 ◽  
Vol 258 (19) ◽  
pp. 7286-7291 ◽  
Author(s):  
Hengquan Liu ◽  
Deyuan Zhang ◽  
Feng Shen ◽  
Gui Zhang ◽  
Shenhua Song
Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 851
Author(s):  
Svetlana I. Dorovskikh ◽  
Evgeniia S. Vikulova ◽  
Elena V. Chepeleva ◽  
Maria B. Vasilieva ◽  
Dmitriy A. Nasimov ◽  
...  

This work is aimed at developing the modification of the surface of medical implants with film materials based on noble metals in order to improve their biological characteristics. Gas-phase transportation methods were proposed to obtain such materials. To determine the effect of the material of the bottom layer of heterometallic structures, Ir, Pt, and PtIr coatings with a thickness of 1.4–1.5 μm were deposited by metal–organic chemical vapor deposition (MOCVD) on Ti6Al4V alloy discs. Two types of antibacterial components, namely, gold nanoparticles (AuNPs) and discontinuous Ag coatings, were deposited on the surface of these coatings. AuNPs (11–14 nm) were deposited by a pulsed MOCVD method, while Ag films (35–40 nm in thickness) were obtained by physical vapor deposition (PVD). The cytotoxic (24 h and 48 h, toward peripheral blood mononuclear cells (PBMCs)) and antibacterial (24 h) properties of monophase (Ag, Ir, Pt, and PtIr) and heterophase (Ag/Pt, Ag/Ir, Ag/PtIr, Au/Pt, Au/Ir, and Au/PtIr) film materials deposited on Ti-alloy samples were studied in vitro and compared with those of uncoated Ti-alloy samples. Studies of the cytokine production by PBMCs in response to incubation of the samples for 24 and 48 h and histological studies at 1 and 3 months after subcutaneous implantation in rats were also performed. Despite the comparable thickness of the fibrous capsule after 3 months, a faster completion of the active phase of encapsulation was observed for the coated implants compared to the Ti alloy analogs. For the Ag-containing samples, growth inhibition of S. epidermidis, S. aureus, Str. pyogenes, P. aeruginosa, and Ent. faecium was observed.


2011 ◽  
Vol 82 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Vinod Krishnan ◽  
K. K. Ravikumar ◽  
K. Sukumaran ◽  
K. Jyothindra Kumar

Abstract Objective: To determine in vitro the frictional properties, surface morphology, and load deflection rate with looped designs of two newly developed titanium aluminum nitride (TiAlN) and tungsten carbide/carbon (WC/C) physical vapor deposition (PVD) coated beta titanium orthodontic archwires coated with PVD. Materials and Methods: Frictional properties with Tidy's protocol, surface evaluation before and after friction testing with the help of scanning electron microscopy (ESEM), and load deflection rate with different orthodontic loops on Instron universal testing machine were evaluated. Results: The results clearly indicate reduced frictional properties for WC/C coated archwires when compared with uncoated and TiAlN coated archwires. There were no significant surface alterations upon ESEM evaluation of friction tested archwires. Low load deflection rate was exhibited by both coated archwires, the difference in load deflection rate between the coated and uncoated archwires was statistically significant. Conclusion: WC/C coated wires can be recommended for even sliding mechanics due to reduced frictional properties, better surface characteristics, and low load deflection rate compared with TiAlN coated and uncoated archwires.


1993 ◽  
Vol 16 (7) ◽  
pp. 545-550 ◽  
Author(s):  
I. Dion ◽  
C. Baquey ◽  
P. Havlik ◽  
J.R. Monties

In order to evaluate under dynamic circumstances the in vitro platelet adhesion induced by rigid materials such as ceramic coatings deposited on selected substrates, a new model simulating a tube has been designed. In vitro platelet adhesion was assessed with this new model: the material was titanium nitride (TiN) deposited on Ti6A14V (TA6V) titanium alloy by a physical vapor deposition (PVD) process. The results were compared to those obtained with complete titanium carbide (TiC) graphite tubes coated with TiN by a chemical vapor deposition (CVD) process. The difference observed (less than 25%) in favour of the new system, could be due to the better surface state of the construction materials of this system. In fact it is a systemic error. However TiN confirms its good performance as a blood-contacting biomaterial.


2014 ◽  
Vol 293 ◽  
pp. 143-150 ◽  
Author(s):  
Pramanshu Trivedi ◽  
Pallavi gupta ◽  
Swati Srivastava ◽  
R. Jayaganthan ◽  
Ramesh Chandra ◽  
...  

Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


2003 ◽  
Vol 48 (1) ◽  
pp. 7 ◽  
Author(s):  
Dong Hyun Kim ◽  
Sung Gwon Kang ◽  
Sang Soo Park ◽  
Don Haeng Lee ◽  
Gyu Baek Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document