The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts

2013 ◽  
Vol 282 ◽  
pp. 425-431 ◽  
Author(s):  
Yi-Fan Qu ◽  
Jia-Xiu Guo ◽  
Ying-Hao Chu ◽  
Ming-Chao Sun ◽  
Hua-Qiang Yin
Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Nicolás Carrara ◽  
Carolina Betti ◽  
Fernando Coloma-Pascual ◽  
María Cristina Almansa ◽  
Laura Gutierrez ◽  
...  

A series of low-loaded metallic-activated carbon catalysts were evaluated during the selective hydrogenation of a medium-chain alkyne under mild conditions. The catalysts and support were characterized by ICP, hydrogen chemisorption, Raman spectroscopy, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR micro-ATR), transmission electronic microscopy (TEM), and X-ray photoelectronic spectroscopy (XPS). When studying the effect of the metallic phase, the catalysts were active and selective to the alkene synthesis. NiCl/C was the most active and selective catalytic system. Besides, when the precursor salt was evaluated, PdN/C was more active and selective than PdCl/C. Meanwhile, alkyne is present in the reaction media, and geometrical and electronic effects favor alkene desorption and so avoid their overhydrogenation to the alkane. Under mild conditions, nickel catalysts are considerably more active and selective than the Lindlar catalyst.


2005 ◽  
Vol 290 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
J CHOI ◽  
T KIM ◽  
K CHOO ◽  
J SUNG ◽  
M SAIDUTTA ◽  
...  

2020 ◽  
Vol 5 (9) ◽  
pp. 1783-1790
Author(s):  
Seungdo Yang ◽  
Hyungjoo Kim ◽  
Do Heui Kim

Hydrogenolysis of alginic acid, derived from macroalgae, was performed over Ru–Ni supported on activated carbon catalyst using NaOH as basic promoter to produce glycols.


2020 ◽  
Vol 10 (17) ◽  
pp. 6107
Author(s):  
Zhiguo Sun ◽  
Menglu Wang ◽  
Jiaming Fan ◽  
Yue Zhou ◽  
Li Zhang

This study explored the regenerated performance of activated carbon (AC) as SO2 adsorbent. The optimal conditions of SO2 removal were determined by experiment, and then the adsorption efficiency of AC was studied by a method of thermal regeneration. The characteristics of regenerated AC were analyzed by Brunauer-Emmett-Teller (BET) and Scanning Electron Microscopy (SEM) methods. The test results showed that the most suitable adsorption conditions were using 4 g of activated carbon, 1.65 L/min gas flue rate, and 5% O2. During the ten regenerations, the desulfurization efficiency and sulfur capacity of AC still maintained a high level. The characterization results showed that the increase of material surface area and pore volume were 101 m2 g−1, and 0.13 cm3 g−1, respectively, after the cycles.


2001 ◽  
Vol 70 (3) ◽  
pp. 151-158 ◽  
Author(s):  
Kaixi Li ◽  
Licheng Ling ◽  
Chunxiang Lu ◽  
Zhenyu Liu ◽  
Lang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document