Interaction between phosphate and acid-activated neutralized red mud during adsorption process

2015 ◽  
Vol 356 ◽  
pp. 128-134 ◽  
Author(s):  
Jie Ye ◽  
Xiangna Cong ◽  
Panyue Zhang ◽  
Erhard Hoffmann ◽  
Guangming Zeng ◽  
...  
Keyword(s):  
Red Mud ◽  
Adsorption ◽  
2015 ◽  
Vol 22 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Eveline H. C. de Oliveira ◽  
Érica T. R. Mendonça ◽  
Osmar S. Barauna ◽  
Joelma M. Ferreira ◽  
Maurício A. da Motta Sobrinho
Keyword(s):  
Red Mud ◽  

2010 ◽  
Vol 62 (11) ◽  
pp. 2491-2500 ◽  
Author(s):  
Sh. Norouzi ◽  
Kh. Badii ◽  
F. Doulati Ardejani

Bauxite waste, known as red mud, is produced in some industrial processes, such as aluminum production process. In this process, the waste material is produced from leached bauxite as a by product. In this research, the removal of Acid Blue 92 (AB92) dye was investigated from aqueous solution onto the activated bauxite waste (red mud) in a batch equilibration system. Besides, the influences of pH, adsorbent dosage, contact time, initial concentration of dye and temperature have been considered. It was found that the OH group is an effective functional group for the adsorption process. The intensity of the peaks correspond to OH group has been significantly climbed after the activation process. The adsorption kinetics of AB92 can be well described by the pseudo-second-order reaction model. Based on the isotherm data obtained from the fittings of the adsorption kinetics, the Langmuir model appears to fit the adsorption process better than the Freundlich and Brunauer-Emmett-Teller (BET) models.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 809
Author(s):  
Yizhe Peng ◽  
Lin Luo ◽  
Shuang Luo ◽  
Kejian Peng ◽  
Yaoyu Zhou ◽  
...  

The resource utilization of excess red mud produced from aluminum production is a current research focus. In this study, novel nano-Fe3O4 modified high-iron red mud material (HRM@nFe3O4) was fabricated using the method of co-precipitation to remove Sb(III) from the aqueous phase. The HRM@nFe3O4 at a nFe3O4:HRM mass ratio of 1:1 had optimal adsorbing performance on Sb(III) in water. Compared with others, the synthetic HRM@nFe3O4 sorbent had a superior maximum Sb(III) adsorption capacity of 98.03 mg·g−1, as calculated by the Langmuir model, and a higher specific surface area of 171.63 m2·g−1, measured using the Brunauer-Emmett-Teller measurement. The adsorption process was stable at an ambient pH range, and negligibly limited by temperature the coexisting anions, except for silicate and phosphate, suggesting the high selectivity toward Sb(III). HRM@nFe3O4 retained more than 60% of the initial adsorption efficiency after the fifth adsorption-desorption cycle. The kinetic data fitted by the pseudo-second-order model illustrated the existence of a chemical adsorption process in the adsorption of Sb(III). Further mechanism analysis results indicated that the complexation reaction played a major role in Sb(III) adsorption by HRM@nFe3O4. This HRM@nFe3O4 adsorbent provides an effective method for the removal of Sb(III) in wastewater treatment and is valuable in the reclamation of red mud.


2010 ◽  
Vol 5 (3) ◽  
pp. 1-8
Author(s):  
Suchit B. Rai ◽  
◽  
Kailas L. Wasewar ◽  
Keyword(s):  
Red Mud ◽  

2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

2020 ◽  
pp. 34-43
Author(s):  
N. R. Memetov ◽  
◽  
A. V. Gerasimova ◽  
A. E. Kucherova ◽  
◽  
...  

The paper evaluates the effectiveness of the use of graphene nanostructures in the purification of lead (II) ions to improve the ecological situation of water bodies. The mechanisms and characteristic parameters of the adsorption process were analyzed using empirical models of isotherms at temperatures of 298, 303, 313 and 323 K, which correspond to the following order (based on the correlation coefficient): Langmuir (0.99) > Temkin (0.97) > Dubinin – Radushkevich (0.90). The maximum adsorption capacity of the material corresponds to the range from 230 to 260 mg/g. We research the equilibrium at the level of thermodynamic parameter estimates, which indicates the spontaneity of the process, the endothermic nature and structure change of graphene modified with phenol-formaldehyde resin during the adsorption of lead (II) ions, leading to an increase in the disorder of the system.


2019 ◽  
Author(s):  
Chem Int

The removal of Cd(II) and Pb(II) ions from aqueous medium was studied using potato peels biomass. The adsorption process was evaluated using Atomic Absorption Spectrophotometer (AAS). The Vibrational band of the potato peels was studied using Fourier Transform Infrared Spectroscopy (FTIR). The adsorption process was carried out with respect to concentration, time, pH, particle size and the thermodynamic evaluation of the process was carried at temperatures of 30, 40, 50 and 60(0C), respectively. The FTIR studies revealed that the potato peels was composed of –OH, -NH, –C=N, –C=C and –C-O-C functional groups. The optimum removal was obtained at pH 8 and contact time of 20 min. The adsorption process followed Freundlich adsorption and pseudo second-order kinetic models with correlation coefficients (R2) greater than 0.900. The equilibrium adsorption capacity showed that Pb(II) ion was more adsorbed on the surface of the potato peels biomass versus Cd (II) ion (200.91 mg/g > 125.00 mg/g). The thermodynamic studies indicated endothermic, dissociative mechanism and spontaneous adsorption process. This study shows that sweet potato peels is useful as a low-cost adsorbent for the removal of Cd(II) and Pb(II) ions from aqueous medium.


2018 ◽  
Vol 60 (4) ◽  
pp. 3-7
Author(s):  
Thi To Yen Nguyen ◽  
Phung Anh Nguyen ◽  
Thi Thuy Van Nguyen ◽  
Tri Nguyen ◽  
Ky Phuong Ha Huynh ◽  
...  
Keyword(s):  
Red Mud ◽  

Sign in / Sign up

Export Citation Format

Share Document