Yolk–shell Fe–Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band

2021 ◽  
pp. 151469
Author(s):  
Jong-Hwan Park ◽  
Sangmin Lee ◽  
Jae Chul Ro ◽  
Su-Jeong Suh
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Youngtaek Hong ◽  
Jinpil Tak ◽  
Jisoo Baek ◽  
Bongsik Myeong ◽  
Jaehoon Choi

This paper proposes a multiband antenna for LTE/GSM/UMTS band operation. The proposed antenna consists of a meandered planar inverted-F antenna with an additional branch line for wide bandwidth and a folded-loop antenna. The antenna provides a wide bandwidth to cover the hepta-band LTE/GSM/UMTS operation. The measured 6 dB return loss bandwidth is 169 MHz (793–962 MHz) at the low-frequency band and 1030 MHz (1700–2730 MHz) at the high-frequency band. The overall dimension of the proposed antenna is 55 mm × 110 mm × 5 mm.


2004 ◽  
Vol 34 (2) ◽  
pp. 371-398
Author(s):  
LUCIA ORLANDO

ABSTRACT: The story of the first Italian communications satellite, SIRIO, started in 1968, after the failure of the European project for the vector ELDO-PAS. The story up to the launch in 1977 involved the encumbering legacy of the San Marco satellite's success in the 1960s, political uncertainty in Italy, international economic crises of the 1970s, an overtly complex management system, and an inexperienced aerospace industry. Despite these handicaps, SIRIO won the race with its nearest competitor, the European satellite OTS, which had a similar research aim in the super high frequency band. In addition to collecting a large amount of useful data, SIRIO catalyzed the process for developing an improved organizational structure for Italian space research.


Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14192-14200 ◽  
Author(s):  
B. Aïssa ◽  
M. Nedil ◽  
J. Kroeger ◽  
M. I. Hossain ◽  
K. Mahmoud ◽  
...  

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films.


2018 ◽  
Vol 10 (12) ◽  
pp. 122 ◽  
Author(s):  
Zubin Chen ◽  
Baijun Lu ◽  
Yanzhou Zhu ◽  
Hao Lv

In this paper, a printed monopole antenna design for WiMAX/WLAN applications in cable-free self-positioning seismograph nodes is proposed. Great improvements were achieved in miniaturizing the antenna and in widening the narrow bandwidth of the high-frequency band. The antenna was fed by a microstrip gradient line and consisted of a triangle, an inverted-F shape, and an M-shaped structure, which was rotated 90° counterclockwise to form a surface-radiating patch. This structure effectively widened the operating bandwidth of the antenna. Excitation led to the generation of two impedance bands of 2.39–2.49 and 4.26–7.99 GHz for a voltage standing wave ratio of less than 2. The two impedance bandwidths were 100 MHz, i.e., 4.08% relative to the center frequency of 2.45 GHz, and 3730 MHz, i.e., 64.31% relative to the center frequency of 5.80 GHz, covering the WiMAX high-frequency band (5.25–5.85 GHz) and the WLAN band (2.4/5.2/5.8). This article describes the design details of the antenna and presents the results of both simulations and experiments that show good agreement. The proposed antenna meets the field-work requirements of cable-less seismograph nodes.


Sign in / Sign up

Export Citation Format

Share Document