Hydrogen-passivation modulation on the friction behavior of graphene with vacancy defects under strain engineering

2021 ◽  
pp. 152055
Author(s):  
Jiahao Li ◽  
Yong Peng ◽  
Xianqiong Tang ◽  
Bo Liu ◽  
Lichun Bai ◽  
...  
2021 ◽  
Vol 23 (10) ◽  
pp. 6298-6308
Author(s):  
Chan Gao ◽  
Xiaoyong Yang ◽  
Ming Jiang ◽  
Lixin Chen ◽  
Zhiwen Chen ◽  
...  

The combination of defect engineering and strain engineering for the modulation of the mechanical, electronic and optical properties of monolayer transition metal dichalcogenides (TMDs).


Vacuum ◽  
2021 ◽  
pp. 110585
Author(s):  
Guogang Liu ◽  
Tong Chen ◽  
Zhonghui Xu ◽  
Guanghui Zhou ◽  
Xianbo Xiao

2020 ◽  
Vol 90 (3) ◽  
pp. 30401
Author(s):  
Mohamed Saaoud ◽  
Kawtar Sadki ◽  
Lalla Btissam Drissi ◽  
Faycal Djeffal

The mechanical behavior of few-layered borophene (η-LB), at different temperatures ranging from 10 to 800 K in conjunction with a variant strain-rate, is studied by employing molecular dynamics simulations based on the Stillinger-Weber potential. The uniaxial tensile deformations along the zigzag- and armchair-direction of the hexagonal lattice are considered for η-LB, with η = 1, 2, 3, 4. We find an extremely anisotropic mechanical response. Parameters such as Young’s modulus and fracture strength are higher along the armchair-traction than the zigzag one due to the corrugated structure along the zigzag-axis. The fracture resistances of η-LB are strongly sensitive to temperature, while their dependence on the strain-rate is relatively low. The influence of nitrogen intercalation as well as vacancy defects on elastic behavior is also determined and discussed. The results are significantly affected by the defect’s type, concentration, and location. Our findings provide useful insights for the design of LB for many applications requiring a practical large magnitude strain engineering.


2020 ◽  
Vol 35 (22) ◽  
pp. 3041-3047
Author(s):  
Lingyan Xu ◽  
Yan Zhou ◽  
Xu Fu ◽  
Lu Liang ◽  
Wanqi Jie

Abstract


2010 ◽  
Vol 38 (3) ◽  
pp. 182-193 ◽  
Author(s):  
Gary E. McKay

Abstract When evaluating aircraft brake control system performance, it is difficult to overstate the importance of understanding dynamic tire forces—especially those related to tire friction behavior. As important as they are, however, these dynamic tire forces cannot be easily or reliably measured. To fill this need, an analytical approach has been developed to determine instantaneous tire forces during aircraft landing, braking and taxi operations. The approach involves using aircraft instrumentation data to determine forces (other than tire forces), moments, and accelerations acting on the aircraft. Inserting these values into the aircraft’s six degree-of-freedom equations-of-motion allows solution for the tire forces. While there are significant challenges associated with this approach, results to date have exceeded expectations in terms of fidelity, consistency, and data scatter. The results show excellent correlation to tests conducted in a tire test laboratory. And, while the results generally follow accepted tire friction theories, there are noteworthy differences.


2019 ◽  
Author(s):  
Andres Castellanos-Gomez ◽  
Patricia Gant ◽  
Riccardo Frisenda

Author(s):  
Jayhoon Chung ◽  
Guoda Lian ◽  
Lew Rabenberg

Abstract Since strain engineering plays a key role in semiconductor technology development, a reliable and reproducible technique to measure local strain in devices is necessary for process development and failure analysis. In this paper, geometric phase analysis of high angle annular dark field - scanning transmission electron microscope images is presented as an effective technique to measure local strains in the current node of Si based transistors.


2013 ◽  
Vol 9 (6) ◽  
pp. 766-772 ◽  
Author(s):  
C. Sabarinathan ◽  
Md. Ali ◽  
S. Muthu

Sign in / Sign up

Export Citation Format

Share Document