Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure

2016 ◽  
Vol 176 ◽  
pp. 38-44 ◽  
Author(s):  
Gülüzar Atli ◽  
Martin Grosell
1995 ◽  
Vol 52 (8) ◽  
pp. 1623-1629 ◽  
Author(s):  
R. Truscott ◽  
C. R. McCrohan ◽  
S. E. R. Bailey ◽  
K. N. White

Time-lapse video was used to examine the effect of short- (19 h) and long-term (1 year) exposure to Al or Pb at neutral pH in static water conditions on the total distance moved by the freshwater snail Lymnaea stagnalis. Aluminium at 100, 200, 500, or 1000 μg∙L−1 normally depressed and Pb at 50 and 200 μg∙L−1 often increased activity over the first 19 h of exposure. Smaller (younger) snails generally showed greater sensitivity to Al. Exposure to 100 or 500 μg Al∙L−1 for up to 30 days caused hyperactivity, but thereafter and 1 year later, activity was similar to controls, suggesting that the snails had become tolerant. Lead (200 μg∙L−1) caused continued hyperactivity for up to 50 days, although movement was significantly reduced after 1 year, suggesting that acclimation had occurred. The effect of Al is interesting given the supposed limited bioavailability of this metal at neutral pH.


1994 ◽  
Vol 192 (1) ◽  
pp. 291-297
Author(s):  
N Ewadinger ◽  
N Syed ◽  
K Lukowiak ◽  
A Bulloch

Electrical coupling is a common means of cell-to-cell communication in both neuronal and non-neuronal tissues (Lowenstein, 1985). Within the nervous system, many electrically coupled neurones exhibit dye coupling (Bennett, 1973; Stewart, 1978; Glantz and Kirk, 1980; Spencer and Satterlie, 1980; Fraser and Heitler, 1993); however, some electrically coupled cells do not dye-couple (Audesirk et al. 1982; Murphy et al. 1983; Berdan, 1987; Robinson et al. 1993; Veenstra et al. 1993). Electrical coupling and dye coupling, often considered in parallel, are in fact two different parameters that can vary independently (e.g. Audesirk et al. 1982; Perez-Armendariz et al. 1991). The giant identified neurones of pulmonate and opisthobranch molluscs have frequently been used for studies of neuronal communication and its plasticity (Winlow and McCrohan, 1987; Bulloch, 1989). In the present study, we explored the relationship between electrical and tracer coupling in both strongly and weakly coupled pairs of molluscan neurones. Specifically, we examined electrically coupled, identified neurones in a freshwater pond snail, Lymnaea stagnalis L., and tested for tracer coupling with Lucifer Yellow CH and biocytin. The cells examined were the strongly electrically coupled neurones, visceral dorsal 1 (VD1) and right parietal dorsal 2 (RPD2) (Boer et al. 1979; Benjamin and Pilkington, 1986), and the weakly coupled neurones, left buccal 1 (LB1) and right buccal 1 (RB1) (Benjamin and Rose, 1979). The use of these particular neurones made it possible to compare electrical coupling with tracer coupling in the molluscan central nervous system (CNS). All experiments were performed on laboratory-bred Lymnaea stagnalis (Mollusca, Pulmonata), maintained as previously described (Ridgway et al. 1991). The CNS was dissected from mature animals (16­18 mm shell length) and pinned to the silicone rubber (RTV 616 GE) base of a recording dish in normal saline (51.3 mmol l-1 NaCl, 1.7 mmol l-1 KCl, 4.1 mmol l-1 CaCl2, 1.5 mmol l-1 MgCl2 and 5 mmol l-1 Hepes, pH 7.9). Following removal of the outer connective tissue sheath, a small Pronase crystal (Sigma, type XIV, P-5147), held by forceps, was carefully applied to specific ganglia; this treatment softened the inner sheath and facilitated microelectrode penetration. The CNS was then rinsed several times at 5 °C in normal saline.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Nicolas Cerveau ◽  
Daniel John Jackson

AbstractMicroRNAs (miRNAs) are a deeply conserved class of small, single stranded RNA molecules that post-transcriptionally regulate mRNA levels via several targeted degradation pathways. They are involved in a wide variety of biological processes and have been used to infer the deep evolutionary relationships of major groups such as the Metazoa. Here we have surveyed several adult tissues of the freshwater pulmonate Lymnaea stagnalis (the Great Pond Snail) for miRNAs. In addition we perform a shell regeneration assay to identify miRNAs that may be involved in regulating mRNAs directly involved in the shell-forming process. From seven mature tissues we identify a total of 370 unique precursor miRNAs that give rise to 336 unique mature miRNAs. While the majority of these appear to be evolutionarily novel, most of the 70 most highly expressed (which account for 99.8% of all reads) share sequence similarity with a miRBase or mirGeneDB2.0 entry. We also identify 10 miRNAs that are differentially regulated in mantle tissue that is actively regenerating shell material, 5 of which appear to be evolutionarily novel and none of which share similarity with any miRNA previously reported to regulate biomineralization in molluscs. One significantly down-regulated miRNA is predicted to target Lst-Dermatopontin, a previously characterized shell matrix protein from another freshwater gastropod. This survey provides a foundation for future studies that would seek to characterize the functional role of these molecules in biomineralization or other processes of interest.


1998 ◽  
Vol 32 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Hisayo Sadamoto ◽  
Dai Hatakeyama ◽  
Satoshi Kojima ◽  
Yutaka Fujito ◽  
Etsuro Ito

Sign in / Sign up

Export Citation Format

Share Document