Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris

2020 ◽  
Vol 219 ◽  
pp. 105376 ◽  
Author(s):  
Jiahua Guo ◽  
Jianglin Peng ◽  
Yuan Lei ◽  
Mirella Kanerva ◽  
Qi Li ◽  
...  
2021 ◽  
Author(s):  
Denglong Lu ◽  
Zhihua Ma ◽  
Jianglin Peng ◽  
Yibo Zhang ◽  
Shan Liu ◽  
...  

Abstract Two model algae Chlorella vulgaris (C. vulgaris) and Raphidocelis subcapitata (R. subcapitata) were generally used to test chemicals with antimicrobial properties during registration process. However, it has been reported that significant sensitivity difference in two algae when exposure to antibiotics. Furthermore, the selection of an appropriate test species play a vital role in evaluate of environmental hazards and risks of compounds. Since the balance between oxidative stress and antioxidant is a crucial factor on alga growth. This experiment is performed to investigate the working of oxidative stress and mechanism of antioxidant defense system of algae under antibiotic stress. A series of concentration of Tylosin (TYN), a macrolide antibiotic, were used to test in this study. Oxidative stress biomarkers (Malondialdehyde (MDA)), non-enzymatic antioxidants (Reduced glutathione (GSH)), antioxidant enzymes (Superoxide dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GP), Glutathione S-transferase (GST)) and photosynthetic pigments were measured to investigate antioxidant defense system. R. subcapitata was significantly inhibited with increasing concentration of TYN, whereas no effects on C. vulgaris. The contents of MDA increased significantly when species were inhibited, and thus, activating the antioxidant system, companying with the significantly increasing of SOD and CAT.


Andrologia ◽  
2018 ◽  
Vol 51 (3) ◽  
pp. e13214 ◽  
Author(s):  
Eman Osama ◽  
Azza A. A. Galal ◽  
Hany Abdalla ◽  
Sawsan M. A. El-Sheikh

2017 ◽  
pp. 73-82
Author(s):  
Dilyana Doneva ◽  
Juliana Ivanova ◽  
Lyudmila Kabaivanova

Determination of biomass production and viability of algal cells of Chlorella vulgaris and Synechocystis salina exposed to UV-B radiation were carried out in this study together with comparison of the mesophilic and antarctic isolates of both investigated strains. Estimation of the content of the pigments: chlorophyll a, chlorophyll b, β-carotene, C-phycocyanin and allo-phycocyanin in algal cells exposed to UV-B radiation was also accomplished. The obtained results showed that the antarctic algae are more resistant to oxidative stress than their mesophilic counterparts. The antarctic isolates of Ch. vulgaris and S. salina compared with the mesophilic ones - up to 72 h showed tolerance to low exposures of radiation, expressed in a slight stimulation of growth and viability of the cells. Antarctic isolates also showed greater resistance to low doses of UV-B radiation manifested by stimulation of the synthesis of chlorophyll a and β-carotene. The registered increase in the amount of C- and allo-phycocyanin in antarctic isolates of S. salina showed that they had developed protective strategies against UV-B radiation by increasing the concentration of the phycobiliproteins. As a result of increased UV-B background, in antarctic isolates, stronger antioxidant defence mechanisms are triggered, which proved the possibility of using them as markers of oxidative stress.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3752
Author(s):  
Nurhazirah Zainul Azlan ◽  
Yasmin Anum Mohd Yusof ◽  
Suzana Makpol

Muscle atrophy in ageing is a multifactorial degenerative process impacted by cellular ageing biology, which includes oxidative stress. Chlorella vulgaris is a coccoid green eukaryotic microalga rich in antioxidants. The aim of this study was to determine the effect of C. vulgaris in ameliorating oxidative stress, thus elucidating its mechanism in improving muscle mass, strength and function in young and old rats. Fifty-six male Sprague-Dawley (SD) rats aged 3 months (young) and 21 months (old) were divided into three groups: Group 1 (control) was given distilled water; Group 2 was treated with 150 mg/kg body weight (BW) of C. vulgaris; and Group 3 was treated with 300 mg/kg BW of C. vulgaris for three months. Grip and muscle strength and muscle integrity were determined on days 0, 30, 60, and 90 of treatment. Urine and blood were collected on days 0 and 90 of treatment for oxidative stress marker determination, while the gastrocnemius muscles were collected for muscle oxidative stress analysis. Increased grip strength of the front and hind paws was observed in young C. vulgaris-treated rats on days 30, 60, and 90 compared to the untreated control on the same days (p < 0.05). There was a significant increase in lean bone mineral content (BMC) in young rats treated with 300 mg/kg BW C. vulgaris compared to untreated rats on days 30 and 60. The fat mass was significantly decreased in young and old C. vulgaris-treated rats on day 90 compared to the untreated control. The total path was significantly increased for old rats treated with 300 mg/kg BW C. vulgaris on days 60 and 90 compared to day 0. Young and old C. vulgaris-treated rats demonstrated a significant decrease in urinary isoprostane F2t and plasma creatine kinase-MM (CKMM) compared to the control on day 90. A significant decrease in malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) levels were observed in young and old rats treated with C. vulgaris. C. vulgaris improved the muscle mass, strength, and function in young and old rats. This effect could be due to its potency in ameliorating oxidative stress in the skeletal muscle of young and old rats.


2013 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Kyung-A Kim ◽  
Kwang Hyun Cha ◽  
Soon-Jung Choi ◽  
Cheol-Ho Pan ◽  
Sang Hoon Jung

2019 ◽  
Vol 6 (11) ◽  
pp. 3316-3323 ◽  
Author(s):  
Mengling Zhang ◽  
Huibo Wang ◽  
Peipei Liu ◽  
Yuxiang Song ◽  
Hui Huang ◽  
...  

The CDs inhibit the growth of Chlorella vulgaris through triggering oxidative stress, decreasing the Rubisco activity and inhibiting the transcription of photosynthesis-related genes.


2019 ◽  
Vol 216 ◽  
pp. 105319 ◽  
Author(s):  
Dongdong Fu ◽  
Qiongjie Zhang ◽  
Zhengquan Fan ◽  
Huaiyuan Qi ◽  
Zezheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document