scholarly journals Chlorella vulgaris supplementation effects on performances, oxidative stress and antioxidant genes expression in liver and ovaries of New Zealand White rabbits

Heliyon ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. e02470 ◽  
Author(s):  
A.B. Sikiru ◽  
A. Arangasamy ◽  
I.C. Alemede ◽  
P.R. Guvvala ◽  
S.S.A. Egena ◽  
...  
Author(s):  
A. B. Sikiru ◽  
A. Arangasamy ◽  
I. C. Alemede ◽  
S. S. A. Egena ◽  
R. Bhatta

Abstract Background Chlorella vulgaris (CV) is a natural source of functional antioxidants capable of protecting against oxidative stress; its dietary supplementation in animals can serve as a way of improving animals’ performance and productive output; on this background, the microalgae was supplemented to growing New Zealand white rabbits and its effects on performances and oxidative stress status were evaluated. Method Thirty-five (35) 6-week-old New Zealand White rabbits (935.48 ± 5.92 g) were divided into five groups (n = 7 per group) in a completely randomized design experiment; rabbits in control groups were fed only commercial rabbits feed, while rabbits in treatment groups were supplemented with 200, 300, 400, and 500 mg Chlorella vulgaris biomass per kilogram of the body weight along with commercial rabbits feed daily. Feed intake and body weight changes were recorded daily and weekly; at the end of the study, blood was collected and subjected to chemical assays for evaluation of serum oxidative stress markers and antioxidant activities. Results Dietary supplementation of the microalgae significantly increased the rabbits’ growth weights (p < 0.01) without significant increase or reduction in feed intakes (p < 0.56), but significantly enhanced feed to gain ratio. The microalgae supplementation significantly protected the rabbits against oxidative stress damages through the reduction of malondialdehyde concentrations (p < 0.001) and increased total antioxidant capacity (p < 0.003). It also led to higher superoxide dismutase activity (p < 0.001), increased catalase activity (p < 0.003), and higher concentration of reduced glutathione (p < 0.001). Conclusion It was concluded from outcomes of both performance and biochemical analysis of the rabbits that daily supplementation of Chlorella vulgaris between 200 and 500 mg per kilogram of the body weight in prepubertal rabbits significantly improved performances in forms of higher weight gains and enhanced feed utilization; it also protected against oxidative stress damages hence it was recommended as dietary antioxidant supplement for growing prepubertal rabbits.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2045
Author(s):  
Hamada Elwan ◽  
Mostafa Abdelhakeam ◽  
Sally El-Shafei ◽  
Atef Abd El-Rahman ◽  
Zienhom Ismail ◽  
...  

Animals fed with a high amount of a wide range of antioxidants in their diet are significantly protected against oxidative stress. Powerful antioxidant substances such as vitamin E, vitamin C, and carotenoids are present naturally in red-hot pepper (RHP). This study hypothesized that using RHP may provide protection against oxidative stress and enhance animal physiological responses. Thus, this study aimed to investigate the effect of feeding New Zealand white rabbits with RHP-supplemented diets on their physiological and biochemical responses. New Zealand White rabbits (age = 6 weeks, n = 48) were split equally into three groups (n = 16 in each group). One group was fed a basal diet only (control group), with the other two groups fed a basal diet along with 1 and 2% RHP. Mass spectrometric analysis for the RHP methanolic extract showed some phenolic compounds, such as p-coumaric, sinapinic acids, vanillic, and luteolin, as well as catechin and its isomers. Hepatic antioxidant enzymes (SOD, GSH, GSH-Px, and CAT) were significantly elevated (p < 0.05) by feeding rabbits diets supplemented with 1 or 2% RHP. The addition of RHP significantly enhanced immune-responses; phagocytic activity, chemotaxis, TIg, IgG, IgM, and IgA increased when growing rabbits were fed RHP compared with the control group. In conclusion, dietary supplementation of 1 or 2% RHP may play a role as an enhancer of growth and immune response in growing rabbits.


2020 ◽  
Author(s):  
Akeem Babatunde Sikiru ◽  
Arangasamy Arunachalam ◽  
Stephen Sunday Acheneje Egena ◽  
Sejian Veerasamy ◽  
Ippala Janardhan Reddy ◽  
...  

Abstract Background Chlorella vulgaris is a unicellular microalga that is rich in antioxidant, its supplementation has been reported to reduce oxidative stress via upregulations of antioxidant genes. However, there are scarce reports on its effect on antioxidant protein expressions in rabbits – a situation which necessitate an untargeted proteomic profile analysis due to its supplementation. This is because untargeted proteomics profiling is an approach suitable for assessing the effectiveness of genes code translation into polypeptide chains folded into functional proteins used for specific sub-cellular or extracellular physiological activities. It remains one of the comparative avenues for evaluating the efficacies of drugs and nutraceutical agents including antioxidants. In this study, the antioxidant efficacy of a microalga Chlorella vulgaris was evaluated at molecular levels using its hepatic protein expression in rabbit models. Results After 120 days of the microalga supplementation, protein was extracted from liver of the rabbits for untargeted proteomics profiling using LC-MS/Orbitrap Fusion Tribrid™ peptides quantifier and sequencer. There were five-hundred and eleven (511) proteins identified; and among the proteins, 191 were specific to the control group while 186 were specific to the Treatment group; and 134 were common to both groups. Independent samples t-test of the protein abundance indicated that there was a significant difference (p = 0.01) between the treatment and the control groups. There was also a significant reduction in the malondialdehyde concentrations (p = 0.01), higher total antioxidant capacities (p = 0.002), and increased antioxidant enzyme activities (p = 0.05) between the treatment and control groups.Conclusion The study concluded that one of the molecular mechanisms associated with Chlorella vulgaris intake reduction of the hepatic oxidative stress is increased abundances of antioxidant proteins and reduction of the lipid peroxidation and these led to a suggestion that the microalga is a potent antioxidant agent suitable for protecting against oxidative stress in rabbits and other domestic food producing animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akeem Babatunde Sikiru ◽  
Arunachalam Arangasamy ◽  
Stephen Sunday Acheneje Egena ◽  
Sejian Veerasamy ◽  
Ippala Janardhan Reddy ◽  
...  

Abstract Background Antioxidant intakes are one of the most cherished dietary approaches for the management of oxidative stress-induced liver damages. These antioxidants exist as the bioactive compounds present in plants and other natural sources functioning in varieties of ways from acting as direct scavengers of the free radicals to acting as the modifiers of genes and proteins expressions. Chlorella vulgaris is one of such antioxidants; it is a unicellular microalga and a rich source of polyphenols which has been reported for its capacity of reducing oxidative stress by upregulation of antioxidant genes. However, there are scarce reports on its effect on antioxidant protein expressions and functions in the liver. This situation necessitates untargeted proteomic profiling of the liver due to the antioxidant intakes as carried out in this present study. Sixteen laboratory weaner rabbits of 8 weeks old with initial average bodyweight of 1060 ± 29.42 g were randomly divided into two groups (n = 8 per group); the first group served as control while the second served as the treatment group were used for this study. Results After a period of 120 days daily consumption of 500 mg of Chlorella vulgaris biomass per kg bodyweight of the rabbit models, the animals were sacrificed and their livers were harvested followed by protein extraction for the untargeted proteomic profiling using LC-MS/Orbitrap Fusion Tribrid™ peptides quantifier and sequencer. Also, there was an assessment of the oxidative stress biomarkers in the liver and serum of the rabbits. Five-hundred and forty-four (544) proteins were identified out of which 204 were unique to the control, 198 were unique to the treatment group, while 142 were common to both groups of the rabbits. Antioxidant proteins commonly found in both groups were upregulated in the treatment group and were significantly associated with oxidative stress-protective activities. There was a reduction in oxidative stress biomarkers of the supplemented group as indicated by the assessment of the liver malondialdehyde concentrations (p < 0.05), total antioxidant capacities (p < 0.05), and antioxidant enzyme activities (p < 0.05). Similarly, these biomarkers were significantly reduced in the serum of the supplemented rabbits (p < 0.05). Conclusion The study concluded that Chlorella vulgaris is an antioxidant agent that could be suitable for reducing liver oxidative stress damage and it is a potential drug candidate for protecting the liver against oxidative stress damages as revealed in the rabbit models.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed M. Hafez ◽  
Othman A. Al-Shabanah ◽  
Naif O. Al-Harbi ◽  
Mohamed M. Al-Harbi ◽  
Salim S. Al-Rejaie ◽  
...  

Objectives. The purpose of the study is to evaluate the hepatoprotective effect of rutin in carbon tetrachloride- (CCl4-) induced liver injuries in rat model.Methods. Forty male Wistar albino rats were divided into four groups. Group I was the control group and received dimethyl sulphoxide (DMSO) and olive oil. Group II received rutin. Groups III was treated with CCl4. Group IV was administered rutin after 48 h of CCl4treatment. Liver enzymes level, lipid profile, lipid peroxidation, and hydrogen peroxide were measured. The genes expression levels were monitored by real time RT-PCR and western blot techniques.Results. CCl4group showed significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBAR), hydrogen peroxide (H2O2), and lipid profile and a significant decrease in glutathione peroxidase (GPx), glutathione S transferase (GST), catalase (CAT), paraoxonase-1 (PON-1), paraoxonase-3 (PON-3), peroxisome proliferator activated receptor delta (PPAR-δ), and ATP-binding cassette transporter 1 (ABAC1) genes expression levels. Interestingly, rutin supplementation completely reversed the biochemical and gene expression levels induced by CCl4to control values.Conclusion. CCl4administration causes aberration of genes expression levels in oxidative stress pathway resulting in DNA damage and hepatotoxicity. Rutin causes hepatoprotective effect through enhancing the antioxidant genes.


Chemosphere ◽  
2016 ◽  
Vol 144 ◽  
pp. 909-917 ◽  
Author(s):  
Silvia Díaz ◽  
Ana Martín-González ◽  
Liliana Cubas ◽  
Ruth Ortega ◽  
Francisco Amaro ◽  
...  

2015 ◽  
Vol 6 (3) ◽  
pp. 963-971 ◽  
Author(s):  
Amalia E. Yanni ◽  
Vissarion Efthymiou ◽  
Pavlos Lelovas ◽  
George Agrogiannis ◽  
Nikolaos Kostomitsopoulos ◽  
...  

Effects of dietary Corinthian currants on atherosclerosis, oxidative stress and plasma phenolic compounds in hypercholesterolemic animal models.


2002 ◽  
Vol 3 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Randall L. Davis ◽  
Christy L. Lavine ◽  
Melissa A. Arredondo ◽  
Patrick McMahon ◽  
Thomas E. Tenner, Jr.

Determination of reliable bioindicators of diabetes-induced oxidative stress and the role of dietary vitamin E supplementation were investigated. Blood (plasma) chemistries, lipid peroxidation (LPO), and antioxidant enzyme activities were measured over 12 weeks in New Zealand White rabbits (control, diabetic, and diabetic + vitamin E). Cholesterol and triglyceride levels did not correlate with diabetic state. PlasmaLPOwas influenced by diabetes and positively correlated with glucose concentration only, not cholesterol or triglycerides. Liver glutathione peroxidase (GPX) activity negatively correlated with glucose and triglyceride levels. Plasma and erythrocyte GPX activities positively correlated with glucose, cholesterol, and triglyceride concentrations. Liver superoxide dismutase activity positively correlated with glucose and cholesterol concentration. Vitamin E reduced plasma LPO, but did not affect the diabetic state. Thus, plasmaLPOwas the most reliable indicator of diabetes-induced oxidative stress. Antioxidant enzyme activities and types of reactive oxygen species generated were tissue dependent. Diabetes-induced oxidative stress is diminished by vitamin E supplementation.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Livan Delgado Roche ◽  
Emilio Acosta Medina ◽  
Ángela Fraga Pérez ◽  
María A. Bécquer Viart ◽  
Yosdel Soto López ◽  
...  

Atherosclerosis represents a major cause of death in the world. It is known that Lipofundin 20% induces atherosclerotic lesions in rabbits, but its effects on serum lipids behaviour and redox environment have not been addressed. In this study, New Zealand rabbits were treated with 2 mL/kg of Lipofundin for 8 days. Then, redox biomarkers and serum lipids were determined spectrophotometrically. On the other hand, the development of atherosclerotic lesions was confirmed by eosin/hematoxylin staining and electron microscopy. At the end of the experiment, total cholesterol, triglycerides, cholesterol-LDL, and cholesterol-HDL levels were significantly increased. Also, a high index of biomolecules damage, a disruption of both enzymatic and nonenzymatic defenses, and a reduction of nitric oxide were observed. Our data demonstrated that Lipofundin 20% induces hyperlipidemia, which promotes an oxidative stress state. Due to the importance of these phenomena as risk factors for atherogenesis, we suggest that Lipofundin induces atherosclerosis mainly through these mechanisms.


Sign in / Sign up

Export Citation Format

Share Document