Inhibitory activity of thermal copolymers of amino acids for the metal-catalyzed hydrolysis of an RNA dinucleotide

2006 ◽  
Vol 38 (6) ◽  
pp. 1220-1226 ◽  
Author(s):  
Kunio Kawamura ◽  
Minoru Nagahama ◽  
Toshio Yao
2020 ◽  
Vol 2 (1) ◽  
pp. 63-73
Author(s):  
Tejasari ◽  
Sih Yuwanti ◽  
Mohammad Bazar Ahmadi ◽  
Yuna Luki Afsari

Peptide with hydrophobic amino acids had been studied for their inhibitory activity against angiotensin-I converting enzyme (ACE-1) transformation into ACE-2 and prevention of hypertension. The active peptides may come from alcalase and flavourzyme hydrolysis of bean protein. This study aimed to measure ACE-1 inhibitory of protein hydrolysates from Vigna sp. bean (mung bean and cowpea) that grew in Indonesia, and its solubility. The bean protein (22.9 - 23.6 %) was extracted using isoelectric precipitation at pH 4-4.6. The extracts were hydrolyzed at pH 8 for alcalase and pH 7 for flavourzyme, followed with inactivation at 80-85 oC. ACE-1 inhibitory activity was calculated based on the amount of hippuric acid (HA) formed by the hydrolysis of Hippuryl-His-Leu (HHL), in spectrophotometry detection method (228 nm). Ultrachromatography evaluation showed that the protein hydrolysates of mungbean contained higher hydrophobic amino acids (382 mg/g protein) compared to those of cowpea (329 mg/g protein). Protein hydrolysates of both beans from alcalase hydrolysis have higher ACE-1 inhibitory activity rather than those from flavourzyme. Protein hydrolysate from Vigna spp bean protein hydrolysis by alcalase, contained small molecular weight peptides (3.9-4.63 kDa) and high ACE-1 inhibition ability (80-93 %), and therefore suggested as antihypertensive nutraceuticals. Highest solubility of protein hydrolysates resulted from alcalase hydrolysis of both beans were observed at pH 8, while those resulted from flavorzyme hydrolysis were at pH 7, respectively.


MRS Advances ◽  
2020 ◽  
Vol 5 (52-53) ◽  
pp. 2669-2678
Author(s):  
Jeovani González P. ◽  
Ramiro Escudero G

AbstractDeinking of recycled office (MOW) paper was carried out by using a flotation column and adding separately sodium hydroxide, and the enzyme Cellulase Thricodema Sp., as defibrillators.The de-inked cellulose fibers were characterized according to the standards of the paper industry, to compare the efficiency of the deinking of each chemical reagent used to hydrolyze the fibers and defibrillate them.The computational simulation of the molecular coupling between the enzyme and cellulose was performed, to establish the enzyme-cellulose molecular complex and then to identify the principal amino-acids of endo-β-1,4-D-glucanase in this molecular link, which are responsible for the hydrolysis of the cellulose.Experimental results show the feasibility to replace sodium hydroxide with the enzyme Cellulase Thricodema Sp., by obtaining deinked cellulose with similar optical and physical properties.The use of the enzyme instead of sodium hydroxide avoids the contamination of the residual water; in addition to that, the column is operated more easily, taking into consideration that the pH of the system goes from alkaline to neutral.


2018 ◽  
Vol 69 (10) ◽  
pp. 2794-2798
Author(s):  
Alina Diana Panainte ◽  
Ionela Daniela Morariu ◽  
Nela Bibire ◽  
Madalina Vieriu ◽  
Gladiola Tantaru ◽  
...  

A peptidic hydrolysate has been obtained through hydrolysis of bovine hemoglobin using pepsin. The fractioning of the hydrolysate was performed on a column packed with CM-Sepharose Fast Flow. The hydrolysate and each fraction was filtered and then injected into a HPLC system equipped with a Vydak C4 reverse phase column (0.46 x 25 cm), suitable for the chromatographic separation of large peptides with 20 to 30 amino acids. The detection was done using mass spectrometry, and the retention time, size and distribution of the peptides were determined.


1972 ◽  
Vol 247 (18) ◽  
pp. 5746-5752
Author(s):  
Ferenc J. Kézdy ◽  
Satya P. Jindal ◽  
Myron L. Bender

1989 ◽  
Vol 76 (6) ◽  
pp. 643-648 ◽  
Author(s):  
S. Albers ◽  
J. Wernerman ◽  
P. Stehle ◽  
E. Vinnars ◽  
P. Fürst

1. A commercial amino acid solution supplemented with two synthetic dipeptides, l-alanyl-l-glutamine (Ala-Gln) and glycyl-l-tyrosine (Gly-Tyr), or alternatively with isonitrogenous amounts of free alanine and glycine has been continuously infused over 4 h in six apparently healthy volunteers. 2. The infusion of the solutions was not accompanied by any side effects and the volunteers reported no complaints. 3. Infusion of the alanine- and glycine-supplemented control solution resulted in an increase of the concentration of these amino acids, while no appreciable change in free glutamine concentration was observed and free tyrosine revealed a steady decrease throughout the infusion. 4. Infusion of the peptide-supplemented solution resulted in a prompt equimolar liberation of the constituent free amino acids (glutamine, alanine, tyrosine and glycine), approaching steady state after about 30 min infusion, while only trace but stable concentrations of the two dipeptides were measured throughout the infusion. No peptides were detectable in urine. The findings suggest a nearly quantitative extracellular hydrolysis of the infused dipeptides and indicate a subsequent utilization of the liberated free amino acids. 5. The estimated metabolic clearance rates and total body plasma clearances were very similar for the two dipeptides (Ala-Gln 35.9 ± 9.5 ml min−1 kg−1 and 2.9 ± 0.9 1/min, respectively; Gly-Tyr 33.7 ± 9.5 ml min−1 kg−1 and 2.7 ± 0.9 1/min, respectively); thus there is little difference in the metabolic handling of these dipeptides. 6. The study provides firm evidence that the synthetic dipeptides Ala-Gln and Gly-Tyr are quantitatively hydrolysed and that these peptides can be used as a safe and efficient source of free glutamine and tyrosine as part of a commercial solution.


1979 ◽  
Vol 27 (5) ◽  
pp. 1098-1104 ◽  
Author(s):  
Antoine J. Puigserver ◽  
Lourminia C. Sen ◽  
Elvira Gonzales-Flores ◽  
Robert E. Feeney ◽  
John R. Whitaker

2002 ◽  
Vol 74 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Iwao Ojima

Recent development in the transition metal-catalyzed cyclization reactions for organic syntheses in the author's laboratories is summarized, which includes (i) novel silylcarbocyclizations (SiCaCs) and carbonylative carbotricyclizations, (ii) intramolecular silylformylations and desymmerization of siloxydiynes by sequential double silylformylation, (iii) efficient total synthesis of (+)-prosopinine, (iv) enantioselective desymmetrization of aminodienes, and (iv) new and efficient routes to 1-azabicyclo[x.y.0]alkane amino acids. All these processes are catalyzed by Rh or Rh­Co complexes, and useful for rapid and efficient construction of a variety of heterocyclic and carbocyclic compounds. Mechanisms of these new carbocyclization and cyclohydrocarbonylation reactions are also discussed.


1995 ◽  
Vol 305 (1) ◽  
pp. 187-196 ◽  
Author(s):  
G J Sharman ◽  
D H Williams ◽  
D F Ewing ◽  
C Ratledge

The extracellular siderophore from Mycobacterium smegmatis, exochelin MS, was isolated from iron-deficiently grown cultures and purified to > 98% by a combination of ion-exchange chromatography and h.p.l.c. The material is unextractable into organic solvents, is basic (pI = 9.3-9.5), has a lambda max at 420 nm and a probable Ks for Fe3+ of between 10(25) and 10(30). Its structure has been determined by examination of desferri- and ferri-exochelin and its gallium complex. The methods used were electrospray-m.s. and one- and two-dimensional (NOESY, DQF-COSY and TOCSY) 1H n.m.r. The constituent amino acids were examined by chiral g.l.c analysis of N-trifluoroacetyl isopropyl and N-pentafluoropropionyl methyl esters after hydrolysis, and reductive HI hydrolysis, of the siderophore. The exochelin is a formylated pentapeptide: N-(delta-N-formyl,delta N-hydroxy-R-ornithyl) -beta-alaninyl-delta N-hydroxy-R-ornithinyl-R-allo-threoninyl-delta N-hydroxy-S-ornithine. The linkages involving the three ornithine residues are via their delta N(OH) and alpha-CO groups leaving three free alpha-NH2 groups. Although there are two peptide bonds, these involve the three R (D)-amino acids. Thus the molecule has no conventional peptide bond, and this suggests that it will be resistant to peptidase hydrolysis. The co-ordination centre with Fe3+ is hexadenate in an octahedral structure involving the three hydroxamic acid groups. Molecular modelling shows it to have similar features to other ferric trihydroxamate siderophores whose three-dimensional structures have been established. The molecule is shown to have little flexibility around the iron chelation centre, although the terminal (Orn-3) residue, which is not involved in iron binding except at its delta N atom, has more motional freedom.


Sign in / Sign up

Export Citation Format

Share Document