scholarly journals Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine Platform using Sentinel-2A and Landsat-8 OLI data

Author(s):  
Samet Aksoy ◽  
Aylin Yildirim ◽  
Taha Gorji ◽  
Nikou Hamzehpour ◽  
Aysegul Tanik ◽  
...  
2021 ◽  
Vol 13 (15) ◽  
pp. 2934
Author(s):  
Meiwei Zhang ◽  
Meinan Zhang ◽  
Haoxuan Yang ◽  
Yuanliang Jin ◽  
Xinle Zhang ◽  
...  

Many studies have attempted to predict soil organic matter (SOM), whereas mapping high-precision and high-resolution SOM maps remains a challenge due to the difficulty of selecting appropriate satellite data sources and prediction algorithms. This study aimed to investigate the influence of different remotely sensed images and machine learning algorithms on SOM prediction. We constructed two comparative experiments, i.e., full-band and common-band variable datasets of Sentinel-2A and MODIS images using Google Earth Engine (GEE). The predictive performances of random forest (RF), artificial neural network (ANN), and support vector regression (SVR) algorithms were evaluated, and the SOM map was generated for the Songnen Plain. Results showed that the model based on the full-band Sentinel-2A dataset achieved the best performance. The application of Sentinel-2A data resulted in mean relative improvements (RIs) of 7.67% and 5.87%, respectively. The RF achieved a lower root mean squared error (RMSE = 0.68%) and a higher coefficient of determination (R2 = 0.67) in all of the predicted scenarios than ANN and SVR. The resultant SOM map accurately characterized the SOM spatial distribution. Therefore, the Sentinel-2A data have obvious advantages over MODIS due to their higher spectral and spatial resolutions, and the combination of the RF algorithm and GEE is an effective approach to SOM mapping.


2021 ◽  
Vol 13 (24) ◽  
pp. 13758
Author(s):  
Kotapati Narayana Loukika ◽  
Venkata Reddy Keesara ◽  
Venkataramana Sridhar

The growing human population accelerates alterations in land use and land cover (LULC) over time, putting tremendous strain on natural resources. Monitoring and assessing LULC change over large areas is critical in a variety of fields, including natural resource management and climate change research. LULC change has emerged as a critical concern for policymakers and environmentalists. As the need for the reliable estimation of LULC maps from remote sensing data grows, it is critical to comprehend how different machine learning classifiers perform. The primary goal of the present study was to classify LULC on the Google Earth Engine platform using three different machine learning algorithms—namely, support vector machine (SVM), random forest (RF), and classification and regression trees (CART)—and to compare their performance using accuracy assessments. The LULC of the study area was classified via supervised classification. For improved classification accuracy, NDVI (normalized difference vegetation index) and NDWI (normalized difference water index) indices were also derived and included. For the years 2016, 2018, and 2020, multitemporal Sentinel-2 and Landsat-8 data with spatial resolutions of 10 m and 30 m were used for the LULC classification. ‘Water bodies’, ‘forest’, ‘barren land’, ‘vegetation’, and ‘built-up’ were the major land use classes. The average overall accuracy of SVM, RF, and CART classifiers for Landsat-8 images was 90.88%, 94.85%, and 82.88%, respectively, and 93.8%, 95.8%, and 86.4% for Sentinel-2 images. These results indicate that RF classifiers outperform both SVM and CART classifiers in terms of accuracy.


2020 ◽  
Vol 12 (22) ◽  
pp. 3776
Author(s):  
Andrea Tassi ◽  
Marco Vizzari

Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources.


2020 ◽  
Vol 17 ◽  
pp. 100287 ◽  
Author(s):  
Nur Shafira Nisa Shaharum ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Wan Azlina Wan Ab Karim Ghani ◽  
Sheila Samsatli ◽  
Mohammed Mustafa Abdulrahman Al-Habshi ◽  
...  

2021 ◽  
Vol 16 (01) ◽  
Author(s):  
Rajan Girija Rejith ◽  
Mayappan Sundararajan ◽  
Lakshmanan Gnanappazham ◽  
Kaliraj Seenipandi ◽  
Sreekantaiyer Ramaswamy

2019 ◽  
Vol 8 (6) ◽  
pp. 248 ◽  
Author(s):  
Imane Bachri ◽  
Mustapha Hakdaoui ◽  
Mohammed Raji ◽  
Ana Cláudia Teodoro ◽  
Abdelmajid Benbouziane

Remote sensing data proved to be a valuable resource in a variety of earth science applications. Using high-dimensional data with advanced methods such as machine learning algorithms (MLAs), a sub-domain of artificial intelligence, enhances lithological mapping by spectral classification. Support vector machines (SVM) are one of the most popular MLAs with the ability to define non-linear decision boundaries in high-dimensional feature space by solving a quadratic optimization problem. This paper describes a supervised classification method considering SVM for lithological mapping in the region of Souk Arbaa Sahel belonging to the Sidi Ifni inlier, located in southern Morocco (Western Anti-Atlas). The aims of this study were (1) to refine the existing lithological map of this region, and (2) to evaluate and study the performance of the SVM approach by using combined spectral features of Landsat 8 OLI with digital elevation model (DEM) geomorphometric attributes of ALOS/PALSAR data. We performed an SVM classification method to allow the joint use of geomorphometric features and multispectral data of Landsat 8 OLI. The results indicated an overall classification accuracy of 85%. From the results obtained, we can conclude that the classification approach produced an image containing lithological units which easily identified formations such as silt, alluvium, limestone, dolomite, conglomerate, sandstone, rhyolite, andesite, granodiorite, quartzite, lutite, and ignimbrite, coinciding with those already existing on the published geological map. This result confirms the ability of SVM as a supervised learning algorithm for lithological mapping purposes.


Sign in / Sign up

Export Citation Format

Share Document