Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering

2018 ◽  
Vol 81 ◽  
pp. 99-107 ◽  
Author(s):  
Ziyang Zhen ◽  
Shuoying Jiang ◽  
Kun Ma
2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Adrian Belmontes ◽  
Francisco Medina

Although a significant portion of unmanned aerial vehicles (UAVs) rely entirely on batteries, there are larger UAVs that operate by utilizing internal combustion engines. These special aircrafts ingest vast quantities of air, directly feeding the supply into the engine for combustion. The goal is to design and build an engine air particle separator (EAPS) for UAVs that employ combustion engines, to remove sand, dust, dirt, or any fine particles from the air being supplied to the engine. Although there are many constraints and restrictions to be considered, it is desired for the EAPS to be a single component, have the ability to connect to a specified intake collar, and fit within a given volume. Among other elements considered, the efficiency, pressure drop, areas of failure, and the selection of a material to build the separator were factored. Three methods of particle filtering were selected: inertial, centrifugal, and hypothetical pressure-barrier separation. To accomplish these goals, the principles of inertia, centrifugal forces, and pressure changes were used along with additive manufacturing – to be able to design and build complex geometries. Results were based on the three prototypes that were built and tested in an enclosure simulating the harsh weather environment and the force applied by the internal combustion engine from the UAV. These results showed that a centrifugal design was best suited for the purpose of the experiment with an experimental efficiency of 87% of the particles being separated from the air.


Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


2020 ◽  
Vol 79 (11) ◽  
pp. 985-995
Author(s):  
Valerii V. Semenets ◽  
V. M. Kartashov ◽  
V. I. Leonidov

Sign in / Sign up

Export Citation Format

Share Document