scholarly journals Detecting tree water stress using a trunk relative water content measurement sensor

2021 ◽  
Vol 1 ◽  
pp. 100003
Author(s):  
A. Alizadeh ◽  
A. Toudeshki ◽  
R. Ehsani ◽  
K. Migliaccio ◽  
D. Wang
2016 ◽  
Vol 27 (2) ◽  
pp. 128-135 ◽  
Author(s):  
J Akte ◽  
S Yasmin ◽  
MJH Bhuiyan ◽  
F Khatun ◽  
J Roy ◽  
...  

Five rice varieties viz. Binadhan-4, Binadhan-5, Binadhan-6, Binadhan-10 and Iratom-24 were evaluated in vitro under different water stress conditions. Several parameters such as germination percentage, shoot length, root length, shoot-root ratio, fresh weight, dry weight, turgid weight, relative water content and proline accumulation were studied. Drought condition was created by MS medium supplemented with five treatments of PEG, with a control such as 0%, 1%, 2%, 3% and 4% of PEG. The highest germination (100%) was found in the variety Binadhan-10 under low water stress conditions induced by 1% PEG. Similarly, the highest percentage of germination was found in all varieties under control condition (0% PEG). The lowest percentage of germination was obtained in the variety Iratom-24. But under severe stress (4% PEG), the highest percentage of germination was found only in the variety Binadhan-10. Moreover, the variety Binadhan-10 was found to be the best at 4% PEG for shoot length, root length, shoot-root ratio, relative water content and also the best at 1% PEG for fresh weight, dry weight, turgid weight. Water stress decreased relative water content and increased proline accumulation in rice. The highest relative water content was recorded in the variety Binadhan-10 and the lowest value recorded in the variety Binadhan-5. The highest proline content was obtained from the binadhan-6 at the highest treatment (4% PEG). Binadhan-10 showed the best performance almost in all the parameters under drought stress because of its own nature of tolerancy.Progressive Agriculture 27 (2): 128-135, 2016


2001 ◽  
Vol 13 (1) ◽  
pp. 75-87 ◽  
Author(s):  
REJANE J. MANSUR C. NOGUEIRA ◽  
JOSÉ ANTÔNIO P. V. DE MORAES ◽  
HÉLIO ALMEIDA BURITY ◽  
EGÍDIO BEZERRA NETO

Young sexually and assexually propagated Barbados cherry plants were submitted to water deficit (20 days without irrigation). During this period the accumulation of proline, water potential of branches, osmotic potential, the relative water content of leaves, the leaf diffusive resistance, the transpiration rate and leaf temperature in the cuvette were determined. In addition, photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) were measured in the porometer cuvette. The concentration of proline for both types of plants began to increase on the fifth day without watering, and reached 38.1 times the concentration in the control plants grown from seeds and 26.4 times the concentration in grafted plants on the tenth day without watering. The lowest levels of leaf water potential in the plants suffering from severe water stress varied from -4.5 to -5.7 MPa, the lowest values being observed in the sexually propagated plants. These plants also showed the highest values for transpiration (0.9 mmol.m-2.s-1) and proline concentration (20.42 mg.g-1 DM), the lowest for relative water content of the leaves (38.4%) and diffusive resistance (940 s.m-1) at the end of the experiment. The Barbados cherry plants developed strategies for surviving drought, with differences between various characteristics, resulting from prolonged stress, which significantly influenced the parameters evaluated, with the exception of leaf temperature.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 601c-601
Author(s):  
Chuhe Chen ◽  
J. Scott Cameron ◽  
Stephen F. Klauer

Leaf water potential (LWP), relative water content (RWC), gas exchange characteristics, and specific leaf weight (SLW) were measured six hours before, during, and after water stress treatment in F. chiloensis and F. ×ananassa grown in growth chambers. The leaves of both species showed significantly lower LWP and RWC as water stress developed. F. ×ananassa had consistency lower LWP under stressed and nonstressed conditions than F. chiloensis. F. ×ananassa had higher RWC under nonstressed conditions, and its RWC decreased more rapidly under water stress than F. chiloensis. In comparison to F. ×ananassa, F. chiloensis had significantly higher CO2 assimilation rate (A), leaf conductance (LC), and SLW, but not transpiration rate (Tr), under stressed and nonstressed conditions. LC was the most sensitive gas exchange characteristic to water stress and decreased first. Later, A and stomatal conductance were reduced under more severe water stress. A very high level of Tr was detected in F. ×ananassa under the most severe water stress and did not regain after stress recovery, suggesting a permanent damage to leaf. The Tr of F. chiloensis was affected less by water stress. Severe water stress resulted in higher SLW of both species.


Irriga ◽  
1998 ◽  
Vol 3 (3) ◽  
pp. 81-88
Author(s):  
Carlos Augusto Lima Porto ◽  
Antonio Evaldo Klar ◽  
José Vicente Vasconcelos

EFEITOS DO DÉFICIT HÍDRICO EM PARÂMETROS FISIOLÓGICOS DE FOLHAS DE SORGO (Sorghum bicolor, L.)  Carlos Augusto Lima PortoAntonio Evaldo Klar(2)José Vicente VasconcelosDepartamento de Engenharia Rural – Faculdade de Ciências Agronômicas – UNESPFone: (014) 821-3883  Fax: (014) 821-343818603-97’ – Botucatu - SP  1 RESUMO O experimento foi conduzido em casa de vegetação no Departamento de Engenharia Rural da Faculdade de Ciências Agronômicas - UNESP/Botucatu, SP, com delineamento experimental inteiramente casualizado, com 12 repetições. A cultura do sorgo (Sorghum bicolor, L.) foi plantada em vasos que continham 8,0 kg de solo (base em peso de solo seco), pertencente ao grande grupo Terra Roxa Estruturada para os dois tratamentos: a) plantas submetidas a défices  hídricos, sendo irrigadas quando o potencial de água no solo chegava a -1,5 MPa, elevando-o às imediações de -0,01 MPa), e b) plantas irrigadas constantemente por capilaridade. Todas as plantas foram irrigadas aos 55 dias após a emergência e os parâmetros avaliados foram: condutância estomática, potencial de água e teor relativo de água nas folhas mais novas totalmente expandidas, com determinações diárias entre as onze e treze horas, até que o potencial de água no solo atingisse valores em torno de -1,5 MPa. Da análise geral dos dados obtidos, pode-se inferir que a variação no status de água na folha observado através do potencial e do teor relativo de água nas folhas pode ser utilizado para indicar o momento de irrigar; ainda estas medições podem ser indicativas das plantas ou cultivares de sorgo que se mostram mais tolerantes à seca e que o mecanismo de adaptação é o  “avoidance”. UNITERMOS: Condutividade estomática, potencial de água na folha, teor relativo de água na folha,  tolerância à seca.  PORTO, C. A . L.., KLAR, A. E. , VASCONCELLOS, V. J.  Water deficit on physiological parameters of soybean  leaves (Sorghum bicolor L).  2 ABSTRACT A study was carried out at Agricultural Engineering Department, UNESP, Botucatu - SP, with a sorghum crop (Sorghum bicolor, L.) in order to physiologically evaluate the crop response to drought. A completely random design with twelve replications were used. Pots with 8 kg of a medium texture soil (dry weight basis) were used in order to test the influence of the two treatments: a) plants being submitted to a water stress, where irrigation were done when the water potential in the soil (s) were -1,5 MPa, raising it to about -0,01 MPa, and b) plants being always irrigated by capillary. The parameters evaluated were water vapor stomata conductivity, water potential  and relative water content in the leaves.  All plants were irrigated at 55 days after emergency, with daily determinations from eleven AM to thirteen PM, until soil water potential reaches around -1,5MPa. From the general data analysis, it can be inferred that there was a significant variation in the water status in the leaves by determinations of water potential and relative water content in the leaves, indicating that the method may be used to indicate the moment of irrigation and the plants and cultivars more tolerant to drought.  Sorghum plants showed adaptation to water stress under avoidance mechanism. KEYWORDS: Stomata conductivity, water potential in the leaves, relative water content, drought tolerance.


Author(s):  
Ramadevi Kundur ◽  
Papi Reddy Reddy T. ◽  
Manohar Rao.T.

In rice, several cultivated and upland varieties need to be assessed and analyzed for drought tolerance traits which could be used in screening and breeding programs for drought tolerance. Hence, the objectives of this study were to investigate the effects of water deficits in two rice cultivars and thereby analyze the role of several physiological traits useful in rice breeding programs for drought tolerance. The rice varieties Tellahamsa (TH) and N22 were screened for tolerance to drought. A comparative study was done subjecting them to PEG mediated water stress. Accumulation of solutes, i.e., proline, total free aminoacids and sugars; biomass production, Relative Water Content (RWC) and the levels of antioxidant enzymes, viz., Catalase (CAT), Ascorbate Peroxidase (APX), Glutathione Reductase(GR), and Superoxide Dismutase(SOD) were analyzed in response to water stress. Maximum proline accumulation was seen within 24hrs of stress, after 10 days TH decreased its proline to one-third, whereas in N22 doubled. Although amino acids doubled within 24hrs, gradually they depleted in N22. This may be due to conversion of aminoacids into proline which could be the most compatible solute. Sugars increased within 24hrs, but were depleted in 10days in both. In TH, the shoot and root biomass decreased, whereas in N22 there was a significant increase in root biomass. Shoot and root RWC of N22 was higher than TH under stress. GR increased in both TH and N22, APX and SOD increased only in N22. Proline accumulation, increase of root biomass and antioxidant enzymes such as APX or SOD during water stress are contributing to drought tolerance and could be used in screening for drought tolerance.


2020 ◽  
pp. 1-13
Author(s):  
Amandeep Kaur ◽  
Rashpal Singh Sarlach

Water stress is one of the major and challenging abiotic stress that affects the plant mostly at all stages like tillering, booting, anthesis, grain formation and grain filling. The aim of the present study is to investigate the effect of water stress on relative water content, leaf area and stay green habit of Iranian landraces along with commercial relevant checks under irrigated, restricted irrigation and rain-fed conditions. Iranian landraces were selected based on minimum reduction in vigor index as compared to control lines during preliminary screening experiment in the lab in which water stress is induced by Polyethylene glycol (PEG 6000). A field experiment was carried out at the experimental area of the Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, Punjab during 2016-2017. The relative water content of Iranian landraces was calculated at the bolting stage according to the turgid weight by applying the equation of relative water content. Leaf area was recorded by leaf area meter and stay-green habit based on a 1-4 visual scale. Analysis of variance revealed interaction among treatment and genotypes was significant (P≤ 0.05) for the leaf area, relative water content, stay green habit at anthesis and 30 days after anthesis. Leaf area, relative water content and stay green habit of Iranian landraces along with commercial checks reduced under water stress conditions. Based on the performance of Iranian landraces under stress conditions, 5 lines IWA 8600397, IWA 8600567, 8606739, IWA 8606786 and IWA 8600753 were considered as water stress tolerant.


Sign in / Sign up

Export Citation Format

Share Document