scholarly journals Vertical profiles of sub-micron aerosol single scattering albedo over Indian region immediately before monsoon onset and during its development: Research from the SWAAMI field campaign

2019 ◽  
Author(s):  
Mohanan R. Manoj ◽  
Sreedharan K. Satheesh ◽  
Krishnaswamy K. Moorthy ◽  
Hugh Coe

Abstract. Vertical structures of aerosol single scattering albedo (SSA), from near the surface through the free troposphere, have been estimated for the first time at distinct geographical locations over the Indian mainland and adjoining oceans, using in-situ measurements of aerosol scattering and absorption coefficients aboard the FAAM BAe-146 aircraft during the South West Asian Aerosol Monsoon Interactions (SWAAMI) campaign from June to July 2016. These are used to examine the spatial variation of SSA profiles and also to characterize its transformation from just prior to the onset of Indian Summer Monsoon (June 2016) to its active phase (July 2016). Very strong aerosol absorption, with SSA values as low as 0.7, persisted in the lower altitudes (

2011 ◽  
Vol 11 (20) ◽  
pp. 10661-10676 ◽  
Author(s):  
E. Andrews ◽  
P. J. Sheridan ◽  
J. A. Ogren

Abstract. A small airplane made 597 aerosol optical property (light absorption and light scattering) vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption). The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter), particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD) although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and winter. The observed seasonal cycle of aerosol loading corresponds with changes in air mass back trajectories: the aerosol scattering was higher when transport was from polluted areas (e.g., the Gulf Coast) and lower when the air came from cleaner regions and/or the upper atmosphere.


2014 ◽  
Vol 14 (7) ◽  
pp. 9041-9065
Author(s):  
J. P. Putaud ◽  
F. Cavalli ◽  
S. Martins dos Santos ◽  
A. Dell'Acqua

Abstract. Aerosols properties have been monitored by ground-based in situ and remote sensing measurements at the station for atmospheric research located in Ispra on the edge of the Po Valley for almost one decade. In-situ measurements are performed according to Global Atmosphere Watch recommendations, and quality is assured through the participation in regular inter-laboratory comparisons. Sunphotometer data are produced by AERONET. Data show significant decreasing trends over 2004–2010 for a number of variables including particulate matter (PM) mass concentration, aerosol scattering, backscattering and absorption coefficients, and aerosol optical thickness (AOT). In-situ measurement data show no significant trend in the aerosol backscatter ratio, but a significant decreasing trend of about −0.7 ± 0.3% in the aerosol single scattering albedo in the visible light range. Similar trends are observed in the aerosol single scattering albedo retrieved from sunphotometer measurements. Correlations appear between in situ PM mass concentration and aerosol scattering coefficient on the one hand, and elemental carbon (EC) and aerosol absorption coefficient on the other hand, however, no increase in the EC / PM ratio was observed, which could have explained the decrease in SSA. The application of a simple approximation to calculate the direct radiative forcing by aerosols suggests a significant diminution in their cooling effect, mainly due to the decrease in AOT. Applying the methodology we present to those sites where the necessary suite of measurements is available would provide important information to inform future policies for air quality enhancement and fast climate change mitigation.


2020 ◽  
Vol 20 (6) ◽  
pp. 4031-4046
Author(s):  
Mohanan R. Manoj ◽  
Sreedharan K. Satheesh ◽  
Krishnaswamy K. Moorthy ◽  
Hugh Coe

Abstract. Vertical structures of aerosol single scattering albedo (SSA), from near the surface through the free troposphere, have been estimated for the first time at distinct geographical locations over the Indian mainland and adjoining oceans, using in situ measurements of aerosol scattering and absorption coefficients aboard the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft during the South West Asian Aerosol Monsoon Interactions (SWAAMI) campaign from June to July 2016. These are used to examine the spatial variation of SSA profiles and also to characterize its transformation from just prior to the onset of Indian Summer Monsoon (June 2016) to its active phase (July 2016). Very strong aerosol absorption, with SSA values as low as 0.7, persisted in the lower altitudes (<3 km) over the Indo-Gangetic Plains (IGP), prior to the monsoon onset, with a west-to-east gradient; lower values occurred in the north-western arid regions, peaking in the central IGP and somewhat decreasing towards the eastern end. During the active phase of the monsoon, the SSA is found to increase remarkably, indicating far less absorption. Nevertheless, significant aerosol absorption persisted in the lower and middle troposphere over the IGP. Inputting these SSA and extinction profiles into a radiative transfer model, we examined the effects of using height-resolved information in estimating atmospheric heating rates due to aerosols, over similar estimates made using a single columnar value. It was noted that use of a single SSA value leads to an underestimation (overestimation) of the heating rates over regions with low (high) SSA, emphasizing the importance of height-resolved information. Further, the use of realistic profiles showed significant heating of the atmosphere by submicron aerosol absorption at the middle troposphere, which may have strong implications for clouds and climate.


2011 ◽  
Vol 11 (4) ◽  
pp. 11939-11957 ◽  
Author(s):  
E. Andrews ◽  
P. J. Sheridan ◽  
J. A. Ogren

Abstract. A small airplane made more than 450 aerosol optical property (light absorption and light scattering) vertical profile measurements (up to 4 km) over a rural Oklahoma site between March 2000 and July 2005. These profiles suggest significant seasonal differences in aerosol properties. The highest amounts of scattering and absorbing aerosol are observed during the summer, while the relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter). Aerosol absorption generally decreased with altitude below ∼1.5 km and then was relatively constant above that. Aerosol scattering decreased sharply with altitude below ∼1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. The seasonal variability observed for aerosol loading is consistent with other aerosol measurements in the region including AERONET aerosol optical depth (AOD), CALIPSO vertical profiles, and IMPROVE aerosol mass. The column averaged single scattering albedo derived from in situ airplane measurements shows a similar seasonal cycle as the AERONET single scattering albedo inversion product, but a comparison of aerosol asymmetry parameter from airplane and AERONET platforms suggests differences in seasonal variability. The observed seasonal cycle of aerosol loading corresponds with changes in air mass back trajectories: the aerosol scattering was higher when transport was from polluted areas (e.g., the Gulf Coast) and lower when the air came from cleaner regions and/or the upper atmosphere.


2014 ◽  
Vol 14 (17) ◽  
pp. 9129-9136 ◽  
Author(s):  
J. P. Putaud ◽  
F. Cavalli ◽  
S. Martins dos Santos ◽  
A. Dell'Acqua

Abstract. Aerosol properties have been monitored by ground-based in situ and remote sensing measurements at the station for atmospheric research located in Ispra, on the edge of the Po Valley, for almost one decade. In situ measurements are performed according to Global Atmosphere Watch recommendations, and quality is assured through the participation in regular inter-laboratory comparisons. Sun-photometer data are produced by the Aerosol Robotic Network (AERONET). Data show significant decreasing trends over the 2004–2010 period for a number of variables, including particulate matter (PM) mass concentration, aerosol scattering, backscattering and absorption coefficients, and aerosol optical thickness (AOT). In situ measurement data show no significant trends in the aerosol backscatter ratio, but they do show a significant decreasing trend of about −0.7 ± 0.3% yr−1 in the aerosol single scattering albedo (SSA) in the visible light range. Similar trends are observed in the SSA retrieved from sun-photometer measurements. Correlations appear between in situ PM mass concentration and aerosol scattering coefficient, on the one hand, and elemental carbon (EC) concentration and aerosol absorption coefficient, on the other hand. However, no increase in the EC / PM ratio was observed, which could have explained the decrease in SSA. The application of a simple approximation to calculate the direct radiative forcing by aerosols suggests a significant diminution in their cooling effect, mainly due to the decrease in AOT. Applying the methodology we present to those sites, where the necessary suite of measurements is available, would provide important information to inform future policies for air-quality enhancement and fast climate change mitigation.


2017 ◽  
Vol 17 (9) ◽  
pp. 6041-6072 ◽  
Author(s):  
Elisabeth Andrews ◽  
John A. Ogren ◽  
Stefan Kinne ◽  
Bjorn Samset

Abstract. Here we present new results comparing aerosol optical depth (AOD), aerosol absorption optical depth (AAOD) and column single scattering albedo (SSA) obtained from in situ vertical profile measurements with AERONET ground-based remote sensing from two rural, continental sites in the US. The profiles are closely matched in time (within ±3 h) and space (within 15 km) with the AERONET retrievals. We have used Level 1.5 inversion retrievals when there was a valid Level 2 almucantar retrieval in order to be able to compare AAOD and column SSA below AERONET's recommended loading constraint (AOD > 0.4 at 440 nm). While there is reasonable agreement for the AOD comparisons, the direct comparisons of in situ-derived to AERONET-retrieved AAOD (or SSA) reveal that AERONET retrievals yield higher aerosol absorption than obtained from the in situ profiles for the low aerosol optical depth conditions prevalent at the two study sites. However, it should be noted that the majority of SSA comparisons for AOD440 > 0.2 are, nonetheless, within the reported SSA uncertainty bounds. The observation that, relative to in situ measurements, AERONET inversions exhibit increased absorption potential at low AOD values is generally consistent with other published AERONET–in situ comparisons across a range of locations, atmospheric conditions and AOD values. This systematic difference in the comparisons suggests a bias in one or both of the methods, but we cannot assess whether the AERONET retrievals are biased towards high absorption or the in situ measurements are biased low. Based on the discrepancy between the AERONET and in situ values, we conclude that scaling modeled black carbon concentrations upwards to match AERONET retrievals of AAOD should be approached with caution as it may lead to aerosol absorption overestimates in regions of low AOD. Both AERONET retrievals and in situ measurements suggest there is a systematic relationship between SSA and aerosol amount (AOD or aerosol light scattering) – specifically that SSA decreases at lower aerosol loading. This implies that the fairly common assumption that AERONET SSA values retrieved at high-AOD conditions can be used to obtain AAOD at low-AOD conditions may not be valid.


2016 ◽  
Vol 16 (14) ◽  
pp. 9435-9455 ◽  
Author(s):  
Matthew J. Alvarado ◽  
Chantelle R. Lonsdale ◽  
Helen L. Macintyre ◽  
Huisheng Bian ◽  
Mian Chin ◽  
...  

Abstract. Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.


2021 ◽  
Author(s):  
Archana Devi ◽  
Sreedharan Krishnakumari Satheesh

Abstract. Single Scattering Albedo (SSA) is a leading contributor to the uncertainty in aerosol radiative impact assessments. Therefore accurate information on aerosol absorption is required on a global scale. In this study, we have applied a multi-satellite algorithm to retrieve SSA using the concept of ‘critical optical depth.’ Global maps of SSA were generated following this approach using spatially and temporally collocated data from Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board Terra and Aqua satellites. The method has been validated using the data from aircraft-based measurements of various field campaigns. The retrieval uncertainty is ±0.03 and depends on both the surface albedo and aerosol absorption. Global mean SSA estimated over land and ocean is 0.93 and 0.97, respectively. Seasonal and spatial distribution of SSA over various regions are also presented. The global maps of SSA, thus derived with improved accuracy, provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


Sign in / Sign up

Export Citation Format

Share Document