Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China

2018 ◽  
Vol 212 ◽  
pp. 54-63 ◽  
Author(s):  
Jiujiang Sheng ◽  
Delong Zhao ◽  
Deping Ding ◽  
Xia Li ◽  
Mengyu Huang ◽  
...  
2020 ◽  
Author(s):  
Dianne Sanchez ◽  
Roger Seco ◽  
Dasa Gu ◽  
Alex Guenther ◽  
John Mak ◽  
...  

Abstract. We report OH reactivity observations by a chemical ionization mass spectrometer – comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul Metropolitan Area (SMA) during Korea US Air Quality Study (KORUS-AQ 2016) from mid-May to mid-June of 2016. A comprehensive observational suite was deployed to quantify reactive trace gases inside of the forest canopy including a high-resolution proton transfer reaction time of flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30.7 ± 5.1 s−1 was observed, while the OH reactivity calculated from CO, NO + NO2 (NOx), ozone (O3), sulfur dioxide (SO2), and 14 volatile organic compounds (VOCs) was 11.8 ± 1.0 s−1. An analysis of 346 peaks from the PTR-ToF-MS accounted for an additional 6.0 ± 2.2 s−1 of the total measured OH reactivity, leaving 42.0 % missing OH reactivity. The missing OH reactivity most likely comes from VOC oxidation products of both biogenic and anthropogenic origin.


2021 ◽  
Vol 21 (8) ◽  
pp. 6331-6345
Author(s):  
Dianne Sanchez ◽  
Roger Seco ◽  
Dasa Gu ◽  
Alex Guenther ◽  
John Mak ◽  
...  

Abstract. We report OH reactivity observations by a chemical ionization mass spectrometer–comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul metropolitan area (SMA) during the Korea–United States Air Quality Study (KORUS-AQ 2016) from mid-May to mid-June of 2016. A comprehensive observational suite was deployed to quantify reactive trace gases inside of the forest canopy including a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30.7±5.1 s−1 was observed, while the OH reactivity calculated from CO, NO+NO2 (NOx), ozone (O3), sulfur dioxide (SO2), and 14 volatile organic compounds (VOCs) was 11.8±1.0 s−1. An analysis of 346 peaks from the PTR-ToF-MS accounted for an additional 6.0±2.2 s−1 of the total measured OH reactivity, leaving 42.0 % missing OH reactivity. A series of analyses indicate that the missing OH reactivity most likely comes from VOC oxidation products of both biogenic and anthropogenic origin.


2020 ◽  
Author(s):  
Gareth J. Stewart ◽  
W. Joe F. Acton ◽  
Beth S. Nelson ◽  
Adam R. Vaughan ◽  
James R. Hopkins ◽  
...  

Abstract. 29 different fuel types used in residential dwellings in northern India were collected from across New Delhi (76 samples in total). Emission factors of a wide range of non-methane volatile organic compounds (NMVOCs) (192 compounds in total) were measured during controlled burning experiments using dual-channel gas chromatography with flame ionisation detection (DC-GD-FID), two-dimensional gas chromatography (GC×GC-FID), proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and solid-phase extraction two-dimensional gas chromatography with time-of-flight mass spectrometry (SPE-GC×GC-ToF-MS). 94 % quantification was achieved on average across all fuel types. The largest contributors to emissions from most fuel types were small non-aromatic oxygenated species, phenolics and furanics. The emission factors (in g kg−1) for total gas-phase NMVOCs were: fuel wood (18.7, 4.3–96.7), cow dung cake (62.0, 35.3–83.0), crop residue (37.9, 8.9–73.8), charcoal (5.4, 2.4–7.9), sawdust (72.4, 28.6–115.5), municipal solid waste (87.3, 56.6–119.1) and liquified petroleum gas (5.7, 1.9–9.8). The emission factors measured in this study allow for better characterisation, evaluation and understanding of the air quality impacts of residential solid fuel combustion in India.


2014 ◽  
Vol 7 (11) ◽  
pp. 3763-3772 ◽  
Author(s):  
M. Müller ◽  
T. Mikoviny ◽  
S. Feil ◽  
S. Haidacher ◽  
G. Hanel ◽  
...  

Abstract. Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) for airborne measurements of volatile organic compounds (VOCs). The new instrument resolves isobaric ions with a mass resolving power (m/Δm) of ~1000, provides accurate m/z measurements (Δm < 3 mDa), records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes), aromatic VOCs (benzene, toluene, xylenes) and ketones (acetone, methyl ethyl ketone) range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km), which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.


Sign in / Sign up

Export Citation Format

Share Document