Automatic segmentation of concrete aggregate using convolutional neural network

2022 ◽  
Vol 134 ◽  
pp. 104106
Author(s):  
Wenjun Wang ◽  
Chao Su ◽  
Heng Zhang
Author(s):  
Liang Kim Meng ◽  
Azira Khalil ◽  
Muhamad Hanif Ahmad Nizar ◽  
Maryam Kamarun Nisham ◽  
Belinda Pingguan-Murphy ◽  
...  

Background: Bone Age Assessment (BAA) refers to a clinical procedure that aims to identify a discrepancy between biological and chronological age of an individual by assessing the bone age growth. Currently, there are two main methods of executing BAA which are known as Greulich-Pyle and Tanner-Whitehouse techniques. Both techniques involve a manual and qualitative assessment of hand and wrist radiographs, resulting in intra and inter-operator variability accuracy and time-consuming. An automatic segmentation can be applied to the radiographs, providing the physician with more accurate delineation of the carpal bone and accurate quantitative analysis. Methods: In this study, we proposed an image feature extraction technique based on image segmentation with the fully convolutional neural network with eight stride pixel (FCN-8). A total of 290 radiographic images including both female and the male subject of age ranging from 0 to 18 were manually segmented and trained using FCN-8. Results and Conclusion: The results exhibit a high training accuracy value of 99.68% and a loss rate of 0.008619 for 50 epochs of training. The experiments compared 58 images against the gold standard ground truth images. The accuracy of our fully automated segmentation technique is 0.78 ± 0.06, 1.56 ±0.30 mm and 98.02% in terms of Dice Coefficient, Hausdorff Distance, and overall qualitative carpal recognition accuracy, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shahab U. Ansari ◽  
Kamran Javed ◽  
Saeed Mian Qaisar ◽  
Rashad Jillani ◽  
Usman Haider

Multiple sclerosis (MS) is a chronic and autoimmune disease that forms lesions in the central nervous system. Quantitative analysis of these lesions has proved to be very useful in clinical trials for therapies and assessing disease prognosis. However, the efficacy of these quantitative analyses greatly depends on how accurately the MS lesions have been identified and segmented in brain MRI. This is usually carried out by radiologists who label 3D MR images slice by slice using commonly available segmentation tools. However, such manual practices are time consuming and error prone. To circumvent this problem, several automatic segmentation techniques have been investigated in recent years. In this paper, we propose a new framework for automatic brain lesion segmentation that employs a novel convolutional neural network (CNN) architecture. In order to segment lesions of different sizes, we have to pick a specific filter or size 3 × 3 or 5 × 5. Sometimes, it is hard to decide which filter will work better to get the best results. Google Net has solved this problem by introducing an inception module. An inception module uses 3 × 3 , 5 × 5 , 1 × 1 and max pooling filters in parallel fashion. Results show that incorporating inception modules in a CNN has improved the performance of the network in the segmentation of MS lesions. We compared the results of the proposed CNN architecture for two loss functions: binary cross entropy (BCE) and structural similarity index measure (SSIM) using the publicly available ISBI-2015 challenge dataset. A score of 93.81 which is higher than the human rater with BCE loss function is achieved.


2021 ◽  
Vol 11 (2) ◽  
pp. 337-344
Author(s):  
Yao Zeng ◽  
Huanhuan Dai

The liver is the largest substantial organ in the abdominal cavity of the human body. Its structure is complex, the incidence of vascular abundance is high, and it has been seriously ribbed, human health and life. In this study, an automatic segmentation method based on deep convolutional neural network is proposed. Image data blocks of different sizes are extracted as training data and different network structures are designed, and features are automatically learned to obtain a segmentation structure of the tumor. Secondly, in order to further refine the segmentation boundary, we establish a multi-region segmentation model with region mutual exclusion constraints. The model combines the image grayscale, gradient and prior probability information, and overcomes the problem that the boundary point attribution area caused by boundary blur and regional adhesion is difficult to determine. Finally, the model is solved quickly using the time-invisible multi-phase level set. Compared with the traditional multi-organ segmentation method, this method does not require registration or model initialization. The experimental results show that the model can segment the liver, kidney and spleen quickly and effectively, and the segmentation accuracy reaches the advanced level of current methods.


Sign in / Sign up

Export Citation Format

Share Document