Stimulation of complement amplification by F(ab')2-containing immune complexes and naturally occurring anti-hinge antibodies, possible role in systemic inflammation

2008 ◽  
Vol 7 (6) ◽  
pp. 508-513 ◽  
Author(s):  
Hans U. Lutz ◽  
Sandra Fumia
2005 ◽  
Vol 60 (1-2) ◽  
pp. 72-78 ◽  
Author(s):  
Henriete S. Vieira ◽  
Jacqueline A. Takahashi ◽  
Lúcia P. S. Pimenta ◽  
Maria Amélia D. Boaventura

Kaurenoic and grandiflorenic acid, isolated from Wedelia paludosa (Asteraceae), some derivatives from these acids (alcohols, esters, amides, lactones, oximes) and other naturally occurring kaurane diterpenes were tested for their action on the growth of radical and shoot of Lactuca sativa. Gibberellic acid, GA3, a commercially available phytohormone, belonging to the same class of diterpenes, was also tested. Some of the tested substances showed a remarkable activity either in the inhibition or in stimulation of L. sativa growth. The activity, in some cases, was even higher than that of GA3.


1965 ◽  
Vol 43 (1) ◽  
pp. 55-78
Author(s):  
D. M. MAYNARD ◽  
M. J. COHEN

1. The effects of electrical and mechanical stimulation upon a ‘naturally occurring’ heteromorph appendage growing in place of one eyestalk in Panulirus argus were examined. The heteromorph resembled the outer flagellum of the antennule in form. 2. Heteromorph stimulation elicited both a generalized withdrawal response, and a specific depression of the third segment and flagellum of the ipsilateral antennule. Such a depression response was also elicited upon stimulation of the ipsilateral outer flagellum of the normal antennule and by no other input investigated. 3. The basic similarity of the two responses was confirmed by electromyography and by intracellular recordings from motor neurons and interneurons within the lobster brain. 4. It was concluded that at least one afferent fibre component from the heteromorph and normal flagellum terminated upon the same interneuron pools, while avoiding others, and that consequently these observations provide evidence for the formation of functional inter-neuronal connexions according to type specificity.


1995 ◽  
Vol 268 (6) ◽  
pp. R1484-R1490 ◽  
Author(s):  
I. Sarel ◽  
E. P. Widmaier

The hypothesis that the stimulatory action of free fatty acids (FFA) in the hypothalamic-pituitary-adrenocortical (HPA) axis occurs in part at the adrenal cortex was evaluated. Pathophysiological concentrations of oleic and linoleic acids, but not stearic or caprylic acid, stimulated steroidogenesis from cultured rat adrenocortical cells (concentrations eliciting 50% of maximal responses, approximately 60 and 120 microM, respectively), with a latency of 90 min. Maximal stimulation of steroidogenesis by both acids was < 50% of that produced by adrenocorticotropic hormone (ACTH) and was blocked by cycloheximide. The maximal steroidogenic response to ACTH was inhibited approximately 50% by oleic acid. The actions of oleic and linoleic acids were not associated with an increase in adenosine 3',5'-cyclic monophosphate (cAMP) secretion but appeared to require intracellular oxidation. None of the lipids influenced cell viability or corticosterone radioimmunoassay. The latency of the steroidogenic response, the putative requirement for intracellular oxidation, and the apparent lack of involvement of cAMP suggest a mechanism of action of FFA distinct from that of ACTH, yet still requiring protein synthesis. It is concluded that the modulation of steroidogenesis by these abundant naturally occurring lipids may be an important component of the control mechanisms within the HPA pathway in disorders of lipid homeostasis (e.g., obesity, starvation, or diabetes).


1990 ◽  
Vol 149 (1) ◽  
pp. 255-279 ◽  
Author(s):  
JAN-MARINO RAMIREZ ◽  
IAN ORCHARD

Modulatory actions of various biogenic amines and peptides on the locust forewing stretch receptor (SR) were examined. The response of the SR to sinusoidal wing movements was unaffected by physiological concentrations (5×10−8moll−1) of the peptides AKHI, AKHII, proctolin and FMRFamide. The biogenic amine octopamine, however, enhanced the SR response in a dosedependent manner when injected into the haemolymph of an almost intact animal or perfused over an isolated thorax preparation in which head, abdomen, gut and the entire central nervous system were removed (threshold at 5×10−8moll−1, maximal effect at 5×10−4moH−1 DL-octopamine). The SR was as sensitive to D-octopamine, the naturally occurring isomer of octopamine, as it was to DLoctopamine. Serotonin was equal to octopamine in effectiveness, followed in order of potency by synephrine, metanephrine and tyramine. Dopamine was ineffective. Phentolamine, but not DL-propranolol, antagonized the action of octopamine. The threshold of the modulatory effect of octopamine on the SR suggests that the increased haemolymph octopamine level which occurs during flight is sufficient to increase the SR activity. Two observations suggest that dorsal unpaired median (DUM) cells are involved in the octopaminergic modulation of the SR during flight: (1) selective stimulation of these cells modulated the SR response and this effect was blocked by phentolamine; and (2) a number of DUM cells were activated during flight. These results suggest that the SR activity is enhanced by octopamine following the onset of flight. Since the SR is involved in the control of wing beat frequency, the modulation of the SR might influence the generation of the motor pattern in flying locusts.


2020 ◽  
Vol 21 (3) ◽  
pp. 817 ◽  
Author(s):  
Alexander N. Orekhov ◽  
Nikita G. Nikiforov ◽  
Vasily N. Sukhorukov ◽  
Marina V. Kubekina ◽  
Igor A. Sobenin ◽  
...  

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


2015 ◽  
Vol 17 (2) ◽  
Author(s):  
M. S. Reheda ◽  
М. А. Kolishetska ◽  
V. R. Yurevych

<p>The aim of our research was to determine the character of the role and functional state of separate indexes<br />of the immune system in blood of guinea-pigs under the conditions of the development of experimental bronchial<br />asthma (BA ) and estimation of thiotriazoline influence on them. Decreasing of T-lymphocytes, stimulation of humoral<br />link of immunity, namely increasing of B-lymphocytes and immunoglobulins of A, M and G, elevation of circulatory<br />immune complexes and slump of complement blood plasma activity had been determined in this research. Immune<br />correcting action of thiotriazoline upon the pointed out indices in case of BA is revealed.</p>


Sign in / Sign up

Export Citation Format

Share Document