scholarly journals Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance

Author(s):  
Joost J.F.P. Luiken ◽  
Miranda Nabben ◽  
Dietbert Neumann ◽  
Jan F.C. Glatz
2006 ◽  
Vol 291 (2) ◽  
pp. E282-E290 ◽  
Author(s):  
Riikka Lautamäki ◽  
Ronald Borra ◽  
Patricia Iozzo ◽  
Markku Komu ◽  
Terho Lehtimäki ◽  
...  

Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-d-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 ± 2.0%) and high (17.4 ± 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level ( P = 0.012) and muscle ( P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake ( P = 0.040) and glucose extraction rate ( P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 ( P < 0.05) and lower coronary flow reserve ( P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.


2013 ◽  
Vol 3 (1) ◽  
pp. 48 ◽  
Author(s):  
Stephanie L Thorn ◽  
Michael H Gollob ◽  
Mary-Ellen Harper ◽  
Rob S Beanlands ◽  
Robert A deKemp ◽  
...  

Life Sciences ◽  
2019 ◽  
Vol 234 ◽  
pp. 116734 ◽  
Author(s):  
Zhifa Wang ◽  
Yunya Wang ◽  
Yuehu Han ◽  
Qiang Yin ◽  
Sheng Hu ◽  
...  

2015 ◽  
Vol 66 (16) ◽  
pp. C20 ◽  
Author(s):  
Hangxiang Zhang ◽  
Jiaojiao Chu ◽  
Tao Shen ◽  
Chongqing Yang ◽  
Xiuqing Huang ◽  
...  

Author(s):  
Kimberley M Mellor ◽  
James R Bell ◽  
Rebecca H Ritchie ◽  
Lea MD Delbridge

2007 ◽  
Vol 293 (5) ◽  
pp. H3063-H3071 ◽  
Author(s):  
Siva Bhashyam ◽  
Pratik Parikh ◽  
Hakki Bolukoglu ◽  
Alexander H. Shannon ◽  
James H. Porter ◽  
...  

Aging is associated with insulin resistance, often attributable to obesity and inactivity. Recent evidence suggests that skeletal muscle insulin resistance in aging is associated with mitochondrial alterations. Whether this is true of the senescent myocardium is unknown. Twelve young (Y, 4 years old) and 12 old (O, 11 years old) dogs, matched for body mass, were instrumented with left-ventricular pressure gauges, aortic and coronary sinus catheters, and flow probes on left circumflex artery. Before surgery, all dogs participated in a 6-wk exercise program. Dogs underwent measurements of hemodynamics and plasma substrates before and during a 2-h hyperinsulinemic-euglycemic clamp to measure whole body and myocardial glucose and nonesterified fatty acid uptake. Following the protocol, myocardial and skeletal samples were obtained to measure components of the insulin-signaling cascade and mitochondrial structure. There was no difference in plasma glucose (Y, 90 ± 4 mg/dl; O, 87 ± 4 mg/dl), but old dogs had higher ( P < 0.02) nonesterified fatty acids (Y, 384 ± 48 μmol/l; O, 952 ± 97 μmol/l) and plasma insulin (Y, 39 ± 11 pmol/l; O, 108 ± 18 pmol/l). Old dogs had impaired total body glucose disposition (Y, 11.5 ± 1 mg·kg−1·min−1; O, 8.0 ± 0.5 mg·kg−1·min−1; P < 0.05) and insulin-stimulated myocardial glucose uptake (Y, 3.5 ± 0.3mg·min−1·g−1; O, 1.8 ± 0.3 mg·min−1·g−1; P < 0.05). The impaired insulin action was associated with altered insulin signaling and glucose transporter (GLUT4) translocation. There were myocardial mitochondrial structural changes observed in association with decreased expression of uncoupling protein-3. Aging is associated with both whole body and myocardial insulin resistance, independent of obesity and inactivity, but involving altered mitochondrial structure and impaired cellular insulin action.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Andrea Ruiz-Velasco ◽  
Min Zi ◽  
Susanne S Hille ◽  
Tayyiba Azam ◽  
Namrita Kaur ◽  
...  

Myocardial insulin resistance contributes to heart failure in response to pathological stresses, therefore, a therapeutic strategy to maintain cardiac insulin pathways requires further investigation. We demonstrated that insulin receptor substrate 1 (IRS1) was reduced in failing mouse hearts post-myocardial infarction (MI) and failing human hearts. The mice manifesting severe cardiac dysfunction post-MI displayed elevated mir128-3p in the myocardium. Ischemia-upregulated mir128-3p promoted Irs1 degradation. Using rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes, we elucidated that mitogen-activated protein kinase 7 (MAPK7, also known as ERK5)-mediated CCAAT/enhancer-binding protein beta (CEBPβ) transcriptionally represses mir128-3p under hypoxia. Therapeutically, functional studies demonstrated gene therapy-delivered cardiac-specific MAPK7 restoration or overexpression of CEBPβ impeded cardiac injury after MI, at least partly due to normalization of mir128-3p. Furthermore, inhibition of mir128-3p preserved Irs1 and ameliorated cardiac dysfunction post-MI. In conclusion, we reveal that targeting mir128-3p mitigates myocardial insulin resistance, thereafter slowing down the progression of heart failure post-ischemia.


2022 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
José Raul Herance ◽  
Rafael Simó ◽  
Mayra Alejandra Velasquez ◽  
Bruno Paun ◽  
Daniel García-Leon ◽  
...  

Background: Systemic insulin resistance is generally postulated as an independent risk factor of cardiovascular events in type 2 diabetes (T2D). However, the role of myocardial insulin resistance (mIR) remains to be clarified. Methods: Two 18F-FDG PET/CT scans were performed on forty-three T2D patients at baseline and after hyperinsulinemic–euglycemic clamp (HEC). Myocardial insulin sensitivity (mIS) was determined by measuring the increment in myocardial 18F-FDG uptake after HEC. Coronary artery calcium scoring (CACs) and myocardial radiodensity (mRD) were assessed by CT. Results: After HEC, seventeen patients exhibited a strikingly enhancement of myocardial 18F-FDG uptake and twenty-six a marginal increase, thus revealing mIS and mIR, respectively. Patients with mIR showed higher mRD (HU: 38.95 [33.81–44.06] vs. 30.82 [21.48–38.02]; p = 0.03) and CACs > 400 (AU: 52% vs. 29%; p = 0.002) than patients with mIS. In addition, HOMA-IR and mIS only showed a correlation in those patients with mIR. Conclusions: 18F-FDG PET combined with HEC is a reliable method for identifying patients with mIR. This subgroup of patients was found to be specifically at high risk of developing cardiovascular events and showed myocardial structural changes. Moreover, the gold-standard HOMA-IR index was only associated with mIR in this subgroup of patients. Our results open up a new avenue for stratifying patients with cardiovascular risk in T2D.


Sign in / Sign up

Export Citation Format

Share Document